Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366997798> ?p ?o ?g. }
- W4366997798 abstract "Abstract A new generation of Automatic Guided Vehicles (AGV) virtualises their Programmable Logic Controller (PLC) in the cloud deploying 5G-based communication infrastructures to provide ultra-fast and reliable links between the AGV and its PLC. Stopping an AGV can result in a loss of tens of thousands of euros per minute and therefore, the use of machine learning techniques to anticipate AGV behavior seems to be appropriate. This work proposes the application of advanced deep neural networks to forecast AGV trajectory errors even if disturbances appear in the 5G network by capturing the packets of the PLC-AGV connection and not using any sensor in the user equipment (AGV or PLC), which facilitates the real-time deployment of the solution. To demonstrate the proposed solution, an industrial AGV and a virtualised PLC were deployed in a real 5G network. Furthermore, a set of advanced deep learning architectures was selected, and an extensive collection of experiments was designed to analyse the forecasting performance of each architecture. Additionally, we discuss the real-time issues that appeared during the execution of the best models in a 5G open laboratory, that provided a realistic deployment in a controlled scenario." @default.
- W4366997798 created "2023-04-27" @default.
- W4366997798 creator A5007721762 @default.
- W4366997798 creator A5017087550 @default.
- W4366997798 creator A5063840202 @default.
- W4366997798 creator A5078453067 @default.
- W4366997798 date "2023-04-25" @default.
- W4366997798 modified "2023-10-17" @default.
- W4366997798 title "Anticipatory analysis of AGV trajectory in a 5G network using machine learning" @default.
- W4366997798 cites W1720804347 @default.
- W4366997798 cites W2062227835 @default.
- W4366997798 cites W2064675550 @default.
- W4366997798 cites W2067878879 @default.
- W4366997798 cites W2072128103 @default.
- W4366997798 cites W2107878631 @default.
- W4366997798 cites W2108563286 @default.
- W4366997798 cites W2112796928 @default.
- W4366997798 cites W2165698076 @default.
- W4366997798 cites W2343828539 @default.
- W4366997798 cites W2621062486 @default.
- W4366997798 cites W2736506089 @default.
- W4366997798 cites W2766736793 @default.
- W4366997798 cites W2792054443 @default.
- W4366997798 cites W2792767783 @default.
- W4366997798 cites W2793311937 @default.
- W4366997798 cites W2794712769 @default.
- W4366997798 cites W2801073287 @default.
- W4366997798 cites W2811131765 @default.
- W4366997798 cites W2853424819 @default.
- W4366997798 cites W2906136421 @default.
- W4366997798 cites W2910922521 @default.
- W4366997798 cites W2912545830 @default.
- W4366997798 cites W2949449669 @default.
- W4366997798 cites W2980620471 @default.
- W4366997798 cites W2980994438 @default.
- W4366997798 cites W2991249011 @default.
- W4366997798 cites W2994930540 @default.
- W4366997798 cites W3006896195 @default.
- W4366997798 cites W3007066689 @default.
- W4366997798 cites W3014274819 @default.
- W4366997798 cites W3022643593 @default.
- W4366997798 cites W3043175843 @default.
- W4366997798 cites W3081417472 @default.
- W4366997798 cites W3083796308 @default.
- W4366997798 cites W3089687835 @default.
- W4366997798 cites W3096574182 @default.
- W4366997798 cites W3107738508 @default.
- W4366997798 cites W3131537898 @default.
- W4366997798 cites W3132166193 @default.
- W4366997798 cites W3137262131 @default.
- W4366997798 cites W3151766371 @default.
- W4366997798 cites W3159580687 @default.
- W4366997798 cites W3164008977 @default.
- W4366997798 cites W3188872815 @default.
- W4366997798 cites W3210048380 @default.
- W4366997798 cites W4205853289 @default.
- W4366997798 cites W4205947740 @default.
- W4366997798 doi "https://doi.org/10.1007/s10845-023-02116-1" @default.
- W4366997798 hasPublicationYear "2023" @default.
- W4366997798 type Work @default.
- W4366997798 citedByCount "0" @default.
- W4366997798 crossrefType "journal-article" @default.
- W4366997798 hasAuthorship W4366997798A5007721762 @default.
- W4366997798 hasAuthorship W4366997798A5017087550 @default.
- W4366997798 hasAuthorship W4366997798A5063840202 @default.
- W4366997798 hasAuthorship W4366997798A5078453067 @default.
- W4366997798 hasBestOaLocation W43669977981 @default.
- W4366997798 hasConcept C105339364 @default.
- W4366997798 hasConcept C111919701 @default.
- W4366997798 hasConcept C121332964 @default.
- W4366997798 hasConcept C127413603 @default.
- W4366997798 hasConcept C1276947 @default.
- W4366997798 hasConcept C133731056 @default.
- W4366997798 hasConcept C13662910 @default.
- W4366997798 hasConcept C149635348 @default.
- W4366997798 hasConcept C154945302 @default.
- W4366997798 hasConcept C158379750 @default.
- W4366997798 hasConcept C2776068756 @default.
- W4366997798 hasConcept C31258907 @default.
- W4366997798 hasConcept C37374048 @default.
- W4366997798 hasConcept C41008148 @default.
- W4366997798 hasConcept C44154836 @default.
- W4366997798 hasConcept C50644808 @default.
- W4366997798 hasConcept C79403827 @default.
- W4366997798 hasConcept C79974875 @default.
- W4366997798 hasConceptScore W4366997798C105339364 @default.
- W4366997798 hasConceptScore W4366997798C111919701 @default.
- W4366997798 hasConceptScore W4366997798C121332964 @default.
- W4366997798 hasConceptScore W4366997798C127413603 @default.
- W4366997798 hasConceptScore W4366997798C1276947 @default.
- W4366997798 hasConceptScore W4366997798C133731056 @default.
- W4366997798 hasConceptScore W4366997798C13662910 @default.
- W4366997798 hasConceptScore W4366997798C149635348 @default.
- W4366997798 hasConceptScore W4366997798C154945302 @default.
- W4366997798 hasConceptScore W4366997798C158379750 @default.
- W4366997798 hasConceptScore W4366997798C2776068756 @default.
- W4366997798 hasConceptScore W4366997798C31258907 @default.
- W4366997798 hasConceptScore W4366997798C37374048 @default.
- W4366997798 hasConceptScore W4366997798C41008148 @default.
- W4366997798 hasConceptScore W4366997798C44154836 @default.