Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366997963> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4366997963 abstract "Abstract Exposure to alcohol content in media increases alcohol consumption and related harm. With exponential growth of media content, it is important to use algorithms to automatically detect and quantify alcohol exposure. Foundational models such as Contrastive Language-Image Pretraining (CLIP) can detect alcohol exposure through Zero-Shot Learning (ZSL) without any additional training. In this paper, we evaluated the ZSL performance of CLIP against a supervised algorithm called Alcoholic Beverage Identification Deep Learning Algorithm Version-2 (ABIDLA2), which is specifically trained to recognise alcoholic beverages in images, across three tasks. We found ZSL achieved similar performance compared to ABIDLA2 in two out of three tasks. However, ABIDLA2 outperformed ZSL in a fine-grained classification task in which determining subtle differences among alcoholic beverages (including containers) are essential. We also found that phrase engineering is essential for improving the performance of ZSL. To conclude, like ABIDLA2, ZSLwith little phrase engineering can achieve promising performance in identifying alcohol exposure in images. This makes it easier for researchers, with little or no programming background, to implement ZSL effectively to obtain insightful analytics from digital media. Such analytics can assist researchers and policy makers to propose regulations that can prevent alcohol exposure and eventually prevent alcohol consumption." @default.
- W4366997963 created "2023-04-27" @default.
- W4366997963 creator A5003375846 @default.
- W4366997963 creator A5010039482 @default.
- W4366997963 creator A5067911307 @default.
- W4366997963 creator A5072682661 @default.
- W4366997963 creator A5072802156 @default.
- W4366997963 creator A5087195057 @default.
- W4366997963 date "2023-04-25" @default.
- W4366997963 modified "2023-09-23" @default.
- W4366997963 title "The Promise of Zero-Shot Learning for Alcohol Image Detection: Comparison with a Task-Specific Deep Learning Algorithm" @default.
- W4366997963 cites W2140467734 @default.
- W4366997963 cites W2157759918 @default.
- W4366997963 cites W2770568711 @default.
- W4366997963 cites W2795781768 @default.
- W4366997963 cites W2883468577 @default.
- W4366997963 cites W2894887744 @default.
- W4366997963 cites W2999380858 @default.
- W4366997963 cites W3008037703 @default.
- W4366997963 cites W3154901276 @default.
- W4366997963 cites W4306293874 @default.
- W4366997963 doi "https://doi.org/10.21203/rs.3.rs-2816544/v1" @default.
- W4366997963 hasPublicationYear "2023" @default.
- W4366997963 type Work @default.
- W4366997963 citedByCount "0" @default.
- W4366997963 crossrefType "posted-content" @default.
- W4366997963 hasAuthorship W4366997963A5003375846 @default.
- W4366997963 hasAuthorship W4366997963A5010039482 @default.
- W4366997963 hasAuthorship W4366997963A5067911307 @default.
- W4366997963 hasAuthorship W4366997963A5072682661 @default.
- W4366997963 hasAuthorship W4366997963A5072802156 @default.
- W4366997963 hasAuthorship W4366997963A5087195057 @default.
- W4366997963 hasBestOaLocation W43669979631 @default.
- W4366997963 hasConcept C108583219 @default.
- W4366997963 hasConcept C11413529 @default.
- W4366997963 hasConcept C119857082 @default.
- W4366997963 hasConcept C127413603 @default.
- W4366997963 hasConcept C154945302 @default.
- W4366997963 hasConcept C185592680 @default.
- W4366997963 hasConcept C201995342 @default.
- W4366997963 hasConcept C2522767166 @default.
- W4366997963 hasConcept C2778827112 @default.
- W4366997963 hasConcept C2780451532 @default.
- W4366997963 hasConcept C2781066024 @default.
- W4366997963 hasConcept C3019635848 @default.
- W4366997963 hasConcept C41008148 @default.
- W4366997963 hasConcept C55493867 @default.
- W4366997963 hasConcept C79158427 @default.
- W4366997963 hasConceptScore W4366997963C108583219 @default.
- W4366997963 hasConceptScore W4366997963C11413529 @default.
- W4366997963 hasConceptScore W4366997963C119857082 @default.
- W4366997963 hasConceptScore W4366997963C127413603 @default.
- W4366997963 hasConceptScore W4366997963C154945302 @default.
- W4366997963 hasConceptScore W4366997963C185592680 @default.
- W4366997963 hasConceptScore W4366997963C201995342 @default.
- W4366997963 hasConceptScore W4366997963C2522767166 @default.
- W4366997963 hasConceptScore W4366997963C2778827112 @default.
- W4366997963 hasConceptScore W4366997963C2780451532 @default.
- W4366997963 hasConceptScore W4366997963C2781066024 @default.
- W4366997963 hasConceptScore W4366997963C3019635848 @default.
- W4366997963 hasConceptScore W4366997963C41008148 @default.
- W4366997963 hasConceptScore W4366997963C55493867 @default.
- W4366997963 hasConceptScore W4366997963C79158427 @default.
- W4366997963 hasLocation W43669979631 @default.
- W4366997963 hasOpenAccess W4366997963 @default.
- W4366997963 hasPrimaryLocation W43669979631 @default.
- W4366997963 hasRelatedWork W2942650110 @default.
- W4366997963 hasRelatedWork W2968586400 @default.
- W4366997963 hasRelatedWork W3017600792 @default.
- W4366997963 hasRelatedWork W3148119887 @default.
- W4366997963 hasRelatedWork W3189515467 @default.
- W4366997963 hasRelatedWork W3196362139 @default.
- W4366997963 hasRelatedWork W4281986673 @default.
- W4366997963 hasRelatedWork W4306175410 @default.
- W4366997963 hasRelatedWork W4362613237 @default.
- W4366997963 hasRelatedWork W4366224123 @default.
- W4366997963 isParatext "false" @default.
- W4366997963 isRetracted "false" @default.
- W4366997963 workType "article" @default.