Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998076> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366998076 endingPage "612" @default.
- W4366998076 startingPage "542" @default.
- W4366998076 abstract "The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of torsion classes over a finite-dimensional algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a complete lattice which enjoys very strong properties, as <italic>bialgebraicity</italic> and <italic>complete semidistributivity</italic>. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we give a representation-theoretical interpretation of the so-called <italic>forcing order</italic>, and we prove that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <italic>completely congruence uniform</italic>. When <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a two-sided ideal of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s left-parenthesis upper A slash upper I right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} (A/I)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a lattice quotient of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is called an <italic>algebraic quotient</italic>, and the corresponding lattice congruence is called an <italic>algebraic congruence</italic>. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s upper A> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi> <mml:semantics> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:annotation encoding=application/x-tex>Pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} Pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s k upper Q> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> <mml:mi>Q</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} k Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the Cambrian lattice when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Q> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=application/x-tex>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Dynkin quiver. We also prove that, in type <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the algebraic quotients of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sans-serif t sans-serif o sans-serif r sans-serif s normal upper Pi> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=sans-serif>t</mml:mi> <mml:mi mathvariant=sans-serif>o</mml:mi> <mml:mi mathvariant=sans-serif>r</mml:mi> <mml:mi mathvariant=sans-serif>s</mml:mi> </mml:mrow> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathsf {tors} Pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are exactly its Hasse-regular lattice quotients." @default.
- W4366998076 created "2023-04-27" @default.
- W4366998076 creator A5014286771 @default.
- W4366998076 creator A5054403940 @default.
- W4366998076 creator A5055901104 @default.
- W4366998076 creator A5076199718 @default.
- W4366998076 creator A5077947489 @default.
- W4366998076 date "2023-04-25" @default.
- W4366998076 modified "2023-10-18" @default.
- W4366998076 title "Lattice theory of torsion classes: Beyond 𝜏-tilting theory" @default.
- W4366998076 cites W1595937157 @default.
- W4366998076 cites W1898987871 @default.
- W4366998076 cites W1968542969 @default.
- W4366998076 cites W2013529674 @default.
- W4366998076 cites W2023779770 @default.
- W4366998076 cites W2038746329 @default.
- W4366998076 cites W206333455 @default.
- W4366998076 cites W2065166780 @default.
- W4366998076 cites W2070662476 @default.
- W4366998076 cites W2080906822 @default.
- W4366998076 cites W2090336748 @default.
- W4366998076 cites W2142339829 @default.
- W4366998076 cites W2280678919 @default.
- W4366998076 cites W2482122046 @default.
- W4366998076 cites W2942998110 @default.
- W4366998076 cites W2963138261 @default.
- W4366998076 cites W2963520554 @default.
- W4366998076 cites W2963937105 @default.
- W4366998076 cites W2964291872 @default.
- W4366998076 cites W2979682500 @default.
- W4366998076 cites W3099777855 @default.
- W4366998076 cites W3100866055 @default.
- W4366998076 cites W3101422316 @default.
- W4366998076 cites W3103927248 @default.
- W4366998076 cites W3104735982 @default.
- W4366998076 cites W3105535497 @default.
- W4366998076 cites W3106212406 @default.
- W4366998076 cites W3121928996 @default.
- W4366998076 cites W3193775040 @default.
- W4366998076 cites W4206452402 @default.
- W4366998076 cites W4238915371 @default.
- W4366998076 cites W4256071345 @default.
- W4366998076 doi "https://doi.org/10.1090/btran/100" @default.
- W4366998076 hasPublicationYear "2023" @default.
- W4366998076 type Work @default.
- W4366998076 citedByCount "3" @default.
- W4366998076 countsByYear W43669980762023 @default.
- W4366998076 crossrefType "journal-article" @default.
- W4366998076 hasAuthorship W4366998076A5014286771 @default.
- W4366998076 hasAuthorship W4366998076A5054403940 @default.
- W4366998076 hasAuthorship W4366998076A5055901104 @default.
- W4366998076 hasAuthorship W4366998076A5076199718 @default.
- W4366998076 hasAuthorship W4366998076A5077947489 @default.
- W4366998076 hasBestOaLocation W43669980761 @default.
- W4366998076 hasConcept C11413529 @default.
- W4366998076 hasConcept C154945302 @default.
- W4366998076 hasConcept C41008148 @default.
- W4366998076 hasConceptScore W4366998076C11413529 @default.
- W4366998076 hasConceptScore W4366998076C154945302 @default.
- W4366998076 hasConceptScore W4366998076C41008148 @default.
- W4366998076 hasFunder F4320334764 @default.
- W4366998076 hasIssue "18" @default.
- W4366998076 hasLocation W43669980761 @default.
- W4366998076 hasOpenAccess W4366998076 @default.
- W4366998076 hasPrimaryLocation W43669980761 @default.
- W4366998076 hasRelatedWork W2051487156 @default.
- W4366998076 hasRelatedWork W2073681303 @default.
- W4366998076 hasRelatedWork W2317200988 @default.
- W4366998076 hasRelatedWork W2358668433 @default.
- W4366998076 hasRelatedWork W2376932109 @default.
- W4366998076 hasRelatedWork W2382290278 @default.
- W4366998076 hasRelatedWork W2386767533 @default.
- W4366998076 hasRelatedWork W2390279801 @default.
- W4366998076 hasRelatedWork W2748952813 @default.
- W4366998076 hasRelatedWork W2899084033 @default.
- W4366998076 hasVolume "10" @default.
- W4366998076 isParatext "false" @default.
- W4366998076 isRetracted "false" @default.
- W4366998076 workType "article" @default.