Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998084> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4366998084 abstract "Abstract Objectives To develop a deep learning-based algorithm that automatically and accurately classifies patients as either having pulmonary emboli or not in CT pulmonary angiography (CTPA) examinations with high accuracy. Materials and Methods Seven hundred CTPA examinations from 652 patients (median age 72 years, range 16-100 years; interquartile range 18 years; 353 women) performed at a single institution between 2014 and 2018, of which 149 examinations contained PE, were used for model development. The nnU-Net deep learning-based segmentation framework was trained using 5-fold cross-validation. To enhance classification, we applied logical rules based on PE volume and probability thresholds. External model evaluation was performed in 770 and 34 CTPAs from two independent datasets. Results A total of 1483 CTPA examinations were evaluated. In internal cross-validation and test set, the trained model correctly classified 123 of 128 examinations as positive for PE (sensitivity 96.1%; 95% C.I. 91-98%; P < .05) and 521 of 551 as negative (specificity 94.6%; 95% C.I. 92-96%; P < .05). In the first external test dataset, the trained model correctly classified 31 of 32 examinations as positive (sensitivity 96.9%; 95% C.I. 84-99%; P < .05) and 2 of 2 as negative (specificity 100%; 95% C.I. 34-100%; P < .05). In the second external test dataset, the trained model correctly classified 379 of 385 examinations as positive (sensitivity 98.4%; 95% C.I. 97-99%; P < .05) and 346 of 385 as negative (specificity 89.9%; 95% C.I. 86-93%; P < .05). Conclusion Beyond state-of-art classification for PE in CTPA was achieved using nnU-Net for deep learning-based segmentation in combination with volume-and probability-based classification. Clinical relevance statement A rapid and fully automated classification of patients as having or not having PE in CTPA examinations using deep learning techniques can help prioritize patients with PE for rapid review in emergency radiology. Key Points An nnU-Net segmentation framework was applied to patient-level classification in CTPA examinations. The proposed algorithm achieved an accuracy of 94.6% with a sensitivity of 96.1% and a specificity of 94.6% in the internal dataset (n=679). The proposed algorithm showed remarkable performance on both internal and two publicly available external testing datasets (AUC, 98.3%; n=1355.)" @default.
- W4366998084 created "2023-04-27" @default.
- W4366998084 creator A5012982051 @default.
- W4366998084 creator A5041637720 @default.
- W4366998084 creator A5063629564 @default.
- W4366998084 creator A5085618693 @default.
- W4366998084 creator A5088869231 @default.
- W4366998084 date "2023-04-25" @default.
- W4366998084 modified "2023-09-29" @default.
- W4366998084 title "High Performance Embolism Detection in Real-World CT Pulmonary Angiography Examinations Using Deep Learning" @default.
- W4366998084 cites W1965039247 @default.
- W4366998084 cites W1997973635 @default.
- W4366998084 cites W2004653491 @default.
- W4366998084 cites W2010929621 @default.
- W4366998084 cites W2013710547 @default.
- W4366998084 cites W2035584525 @default.
- W4366998084 cites W2046069535 @default.
- W4366998084 cites W2048953938 @default.
- W4366998084 cites W2065716674 @default.
- W4366998084 cites W2109035963 @default.
- W4366998084 cites W2115055475 @default.
- W4366998084 cites W2135554434 @default.
- W4366998084 cites W2223737960 @default.
- W4366998084 cites W2590913073 @default.
- W4366998084 cites W2677312504 @default.
- W4366998084 cites W2793336608 @default.
- W4366998084 cites W2889846360 @default.
- W4366998084 cites W2950684561 @default.
- W4366998084 cites W2966744887 @default.
- W4366998084 cites W2971121646 @default.
- W4366998084 cites W3018185338 @default.
- W4366998084 cites W3039113409 @default.
- W4366998084 cites W3096947210 @default.
- W4366998084 cites W3112701542 @default.
- W4366998084 cites W3121030539 @default.
- W4366998084 cites W3123661268 @default.
- W4366998084 cites W3164505581 @default.
- W4366998084 cites W4220661517 @default.
- W4366998084 doi "https://doi.org/10.1101/2023.04.21.23288861" @default.
- W4366998084 hasPublicationYear "2023" @default.
- W4366998084 type Work @default.
- W4366998084 citedByCount "0" @default.
- W4366998084 crossrefType "posted-content" @default.
- W4366998084 hasAuthorship W4366998084A5012982051 @default.
- W4366998084 hasAuthorship W4366998084A5041637720 @default.
- W4366998084 hasAuthorship W4366998084A5063629564 @default.
- W4366998084 hasAuthorship W4366998084A5085618693 @default.
- W4366998084 hasAuthorship W4366998084A5088869231 @default.
- W4366998084 hasBestOaLocation W43669980841 @default.
- W4366998084 hasConcept C119060515 @default.
- W4366998084 hasConcept C126322002 @default.
- W4366998084 hasConcept C126838900 @default.
- W4366998084 hasConcept C154945302 @default.
- W4366998084 hasConcept C2776265017 @default.
- W4366998084 hasConcept C2780149156 @default.
- W4366998084 hasConcept C2781347138 @default.
- W4366998084 hasConcept C2989005 @default.
- W4366998084 hasConcept C41008148 @default.
- W4366998084 hasConcept C544519230 @default.
- W4366998084 hasConcept C71924100 @default.
- W4366998084 hasConceptScore W4366998084C119060515 @default.
- W4366998084 hasConceptScore W4366998084C126322002 @default.
- W4366998084 hasConceptScore W4366998084C126838900 @default.
- W4366998084 hasConceptScore W4366998084C154945302 @default.
- W4366998084 hasConceptScore W4366998084C2776265017 @default.
- W4366998084 hasConceptScore W4366998084C2780149156 @default.
- W4366998084 hasConceptScore W4366998084C2781347138 @default.
- W4366998084 hasConceptScore W4366998084C2989005 @default.
- W4366998084 hasConceptScore W4366998084C41008148 @default.
- W4366998084 hasConceptScore W4366998084C544519230 @default.
- W4366998084 hasConceptScore W4366998084C71924100 @default.
- W4366998084 hasLocation W43669980841 @default.
- W4366998084 hasOpenAccess W4366998084 @default.
- W4366998084 hasPrimaryLocation W43669980841 @default.
- W4366998084 hasRelatedWork W1976555786 @default.
- W4366998084 hasRelatedWork W2007109185 @default.
- W4366998084 hasRelatedWork W2027787383 @default.
- W4366998084 hasRelatedWork W2038395988 @default.
- W4366998084 hasRelatedWork W2113537507 @default.
- W4366998084 hasRelatedWork W2128764891 @default.
- W4366998084 hasRelatedWork W2131043160 @default.
- W4366998084 hasRelatedWork W2167335757 @default.
- W4366998084 hasRelatedWork W2901874416 @default.
- W4366998084 hasRelatedWork W4212942234 @default.
- W4366998084 isParatext "false" @default.
- W4366998084 isRetracted "false" @default.
- W4366998084 workType "article" @default.