Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998085> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4366998085 abstract "Background: Artificial intelligence (AI) technologies can help solve the significant problem of missed findings in radiology studies. An important issue is assessing the economic benefits of implementing AI. Aim: to evaluate the frequency of missed pathologies detection and the economic potential of AI technology for chest CT, validated by expert radiologists, compared with radiologists without access to AI in a private medical center. Methods: An observational, single-center retrospective study was conducted. The study included chest CTs without IV contrast performed from 01.06.2022 to 31.07.2022 in Yauza Hospital LLC, Moscow. The CTs were processed using a complex AI algorithm for ten pathologies: pulmonary infiltrates, typical for viral pneumonia (COVID-19 in pandemic conditions); lung nodules; pleural effusion; pulmonary emphysema; thoracic aortic dilatation; pulmonary trunk dilatation; coronary artery calcification; adrenal hyperplasia; osteoporosis (vertebral body height and density changes). Two experts analyzed CTs and compared results with AI. Further routing was determined according to clinical guidelines for all findings initially detected and missed by radiologists. The lost potential revenue (LPR) was calculated for each patient according to the hospital price list. Results: From the final 160 CTs, the AI identified 90 studies (56%) with pathologies, of which 81 studies (51%) were missing at least one pathology in the report. The second-stage LPR for all pathologies from 81 patients was RUB 2,847,760 ($37,251 or CNY 256,218). LPR only for those pathologies missed by radiologists but detected by AI was RUB 2,065,360 ($27,017 or CNY 185,824). Conclusion: Using AI for chest CTs as an assistant to the radiologist can significantly reduce the number of missed abnormalities. AI usage can bring 3.6 times more benefits compared to the standard model without AI. The use of complex AI for chest CT can be cost-effective." @default.
- W4366998085 created "2023-04-27" @default.
- W4366998085 creator A5021247571 @default.
- W4366998085 creator A5031062527 @default.
- W4366998085 creator A5032975717 @default.
- W4366998085 creator A5035068072 @default.
- W4366998085 creator A5040953082 @default.
- W4366998085 creator A5047701972 @default.
- W4366998085 creator A5056410182 @default.
- W4366998085 creator A5068714046 @default.
- W4366998085 creator A5072232777 @default.
- W4366998085 creator A5081030295 @default.
- W4366998085 date "2023-04-25" @default.
- W4366998085 modified "2023-10-02" @default.
- W4366998085 title "A diagnostic and economic evaluation of the complex artificial intelligence algorithm aimed to detect 10 pathologies on the chest CT images" @default.
- W4366998085 cites W130099911 @default.
- W4366998085 cites W1497314796 @default.
- W4366998085 cites W1866413456 @default.
- W4366998085 cites W1975691484 @default.
- W4366998085 cites W2132826329 @default.
- W4366998085 cites W2138657325 @default.
- W4366998085 cites W2153785016 @default.
- W4366998085 cites W2153997368 @default.
- W4366998085 cites W2165839911 @default.
- W4366998085 cites W2231579991 @default.
- W4366998085 cites W2607056793 @default.
- W4366998085 cites W2617587166 @default.
- W4366998085 cites W2632518954 @default.
- W4366998085 cites W2794467195 @default.
- W4366998085 cites W2898197178 @default.
- W4366998085 cites W2900670381 @default.
- W4366998085 cites W2902783010 @default.
- W4366998085 cites W2928271642 @default.
- W4366998085 cites W2942249639 @default.
- W4366998085 cites W2947665709 @default.
- W4366998085 cites W3092805781 @default.
- W4366998085 cites W3094777985 @default.
- W4366998085 cites W3130563595 @default.
- W4366998085 cites W3144061366 @default.
- W4366998085 cites W3173167299 @default.
- W4366998085 cites W3194225007 @default.
- W4366998085 cites W3214356004 @default.
- W4366998085 cites W4200617340 @default.
- W4366998085 cites W4206121490 @default.
- W4366998085 cites W4206923015 @default.
- W4366998085 cites W4221017734 @default.
- W4366998085 cites W4280492035 @default.
- W4366998085 cites W4304689652 @default.
- W4366998085 cites W4317600696 @default.
- W4366998085 doi "https://doi.org/10.1101/2023.04.19.23288584" @default.
- W4366998085 hasPublicationYear "2023" @default.
- W4366998085 type Work @default.
- W4366998085 citedByCount "0" @default.
- W4366998085 crossrefType "posted-content" @default.
- W4366998085 hasAuthorship W4366998085A5021247571 @default.
- W4366998085 hasAuthorship W4366998085A5031062527 @default.
- W4366998085 hasAuthorship W4366998085A5032975717 @default.
- W4366998085 hasAuthorship W4366998085A5035068072 @default.
- W4366998085 hasAuthorship W4366998085A5040953082 @default.
- W4366998085 hasAuthorship W4366998085A5047701972 @default.
- W4366998085 hasAuthorship W4366998085A5056410182 @default.
- W4366998085 hasAuthorship W4366998085A5068714046 @default.
- W4366998085 hasAuthorship W4366998085A5072232777 @default.
- W4366998085 hasAuthorship W4366998085A5081030295 @default.
- W4366998085 hasBestOaLocation W43669980851 @default.
- W4366998085 hasConcept C11413529 @default.
- W4366998085 hasConcept C126322002 @default.
- W4366998085 hasConcept C126838900 @default.
- W4366998085 hasConcept C2777914695 @default.
- W4366998085 hasConcept C2779634585 @default.
- W4366998085 hasConcept C41008148 @default.
- W4366998085 hasConcept C71924100 @default.
- W4366998085 hasConceptScore W4366998085C11413529 @default.
- W4366998085 hasConceptScore W4366998085C126322002 @default.
- W4366998085 hasConceptScore W4366998085C126838900 @default.
- W4366998085 hasConceptScore W4366998085C2777914695 @default.
- W4366998085 hasConceptScore W4366998085C2779634585 @default.
- W4366998085 hasConceptScore W4366998085C41008148 @default.
- W4366998085 hasConceptScore W4366998085C71924100 @default.
- W4366998085 hasLocation W43669980851 @default.
- W4366998085 hasOpenAccess W4366998085 @default.
- W4366998085 hasPrimaryLocation W43669980851 @default.
- W4366998085 hasRelatedWork W15095678 @default.
- W4366998085 hasRelatedWork W1841185769 @default.
- W4366998085 hasRelatedWork W1990860649 @default.
- W4366998085 hasRelatedWork W2010581086 @default.
- W4366998085 hasRelatedWork W2060907966 @default.
- W4366998085 hasRelatedWork W2147369466 @default.
- W4366998085 hasRelatedWork W2728487306 @default.
- W4366998085 hasRelatedWork W2779908833 @default.
- W4366998085 hasRelatedWork W2957508453 @default.
- W4366998085 hasRelatedWork W83375014 @default.
- W4366998085 isParatext "false" @default.
- W4366998085 isRetracted "false" @default.
- W4366998085 workType "article" @default.