Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998167> ?p ?o ?g. }
- W4366998167 abstract "ABSTRACT Background Spatial and single-cell transcriptomics have revealed significant heterogeneity in tumor and normal tissues. Each approach has its advantages: The Visium platform for spatial transcriptomics (ST) offers lower resolution than single-cell analysis, but histology enables the examination of cell morphology, tissue architecture, and potential cell-cell interactions. Single-cell transcriptomics (SC) provides high resolution, but manual cell-type annotation depends on incomplete scientific knowledge from heterogeneous experiments. When investigating poorly defined phenomena, such as the transition from normal tissue to cancer and metaplasia, researchers might overlook critical and unexpected findings in downstream analysis if they rely on pre-existing annotations to determine cell types, particularly in the context of phenotypic plasticity. Results We employ our deep-transfer learning framework, DEGAS, to identify benign morphology glands in normal prostate tissue that are associated with poor progression-free survival in cancer patients and exhibit transcriptional signatures of carcinogenesis and de-differentiation. We confirm this finding in an additional ST dataset and use novel published methods to integrate SC data, showing that cells annotated as cancerous in the SC data map to regions of benign glands in another dataset. We pinpoint several genes, primarily MSMB, with expression closely correlated with progression-free survival scores, which are known markers of de-differentiation, and attribute their expression specifically to luminal epithelia, which are the presumed origin of most prostatic cancers. Discussion Our work shows that morphologically normal epithelia can have transcriptional signatures like that of frank cancer, and that these tissues are associated with poor progression-free survival. We also highlight a critical gap in single-cell workflows: annotating continuous transitional phenomena like carcinogenesis with discrete labels can result in incomplete conclusions. Two approaches can help mitigate this issue: Tools like DEGAS and Scissor can provide a disease-association score for SC and ST data, independent of cell type and histology. Additionally, researchers should adopt a bidirectional approach, transferring histological labels from ST data to SC data using tools like RCTD, rather than only using SC cell-type assignments to annotate ST data. Employed together, these methods can offer valuable histology and disease-related information to better define tissue subtypes, especially epithelial cells in the process of carcinogenesis. Conclusions DEGAS is a vital tool for generating clinically-oriented hypotheses from SC and ST data, which are heterogeneous, information-rich assays. In this study, we identify potential signatures of carcinogenesis in morphologically benign epithelia, which may be the precursors to cancer and high-grade pre-malignant lesions. Validating these genes as a panel may help identify patients at high risk for future cancer development, recurrence, and assist researchers in studying the biology of early carcinogenesis by detecting metaplastic changes before they are morphologically identifiable." @default.
- W4366998167 created "2023-04-27" @default.
- W4366998167 creator A5020603910 @default.
- W4366998167 creator A5040985137 @default.
- W4366998167 creator A5053089219 @default.
- W4366998167 creator A5062080836 @default.
- W4366998167 creator A5073501391 @default.
- W4366998167 creator A5080644696 @default.
- W4366998167 date "2023-04-25" @default.
- W4366998167 modified "2023-09-26" @default.
- W4366998167 title "Diagnostic Evidence Gauge of Spatial Transcriptomics (DEGAS): Using transfer learning to map clinical data to spatial transcriptomics in prostate cancer" @default.
- W4366998167 cites W1506304343 @default.
- W4366998167 cites W1624269400 @default.
- W4366998167 cites W1964847767 @default.
- W4366998167 cites W1973059882 @default.
- W4366998167 cites W1979087987 @default.
- W4366998167 cites W1996570931 @default.
- W4366998167 cites W2009224696 @default.
- W4366998167 cites W2009364828 @default.
- W4366998167 cites W2012034410 @default.
- W4366998167 cites W2049959255 @default.
- W4366998167 cites W2071533775 @default.
- W4366998167 cites W2086200948 @default.
- W4366998167 cites W2089017800 @default.
- W4366998167 cites W2092566559 @default.
- W4366998167 cites W2097536603 @default.
- W4366998167 cites W2103274715 @default.
- W4366998167 cites W2121158863 @default.
- W4366998167 cites W2124649657 @default.
- W4366998167 cites W2129122136 @default.
- W4366998167 cites W2144298794 @default.
- W4366998167 cites W2153747194 @default.
- W4366998167 cites W2165544861 @default.
- W4366998167 cites W2166387306 @default.
- W4366998167 cites W2230047757 @default.
- W4366998167 cites W2293873588 @default.
- W4366998167 cites W2567828940 @default.
- W4366998167 cites W2625931016 @default.
- W4366998167 cites W2752775557 @default.
- W4366998167 cites W2788983737 @default.
- W4366998167 cites W2889326414 @default.
- W4366998167 cites W2901068426 @default.
- W4366998167 cites W2945057866 @default.
- W4366998167 cites W2964312306 @default.
- W4366998167 cites W2999168532 @default.
- W4366998167 cites W3127399859 @default.
- W4366998167 cites W3129476455 @default.
- W4366998167 cites W3133859624 @default.
- W4366998167 cites W3159543727 @default.
- W4366998167 cites W3205508855 @default.
- W4366998167 cites W3210410970 @default.
- W4366998167 cites W3211405363 @default.
- W4366998167 cites W4210313704 @default.
- W4366998167 cites W4220765144 @default.
- W4366998167 cites W4220893193 @default.
- W4366998167 cites W4221068576 @default.
- W4366998167 cites W4245034530 @default.
- W4366998167 cites W4282591735 @default.
- W4366998167 cites W4289641871 @default.
- W4366998167 cites W4291019543 @default.
- W4366998167 cites W4293561067 @default.
- W4366998167 cites W4294053500 @default.
- W4366998167 doi "https://doi.org/10.1101/2023.04.21.537852" @default.
- W4366998167 hasPublicationYear "2023" @default.
- W4366998167 type Work @default.
- W4366998167 citedByCount "0" @default.
- W4366998167 crossrefType "posted-content" @default.
- W4366998167 hasAuthorship W4366998167A5020603910 @default.
- W4366998167 hasAuthorship W4366998167A5040985137 @default.
- W4366998167 hasAuthorship W4366998167A5053089219 @default.
- W4366998167 hasAuthorship W4366998167A5062080836 @default.
- W4366998167 hasAuthorship W4366998167A5073501391 @default.
- W4366998167 hasAuthorship W4366998167A5080644696 @default.
- W4366998167 hasBestOaLocation W43669981671 @default.
- W4366998167 hasConcept C104317684 @default.
- W4366998167 hasConcept C121608353 @default.
- W4366998167 hasConcept C127716648 @default.
- W4366998167 hasConcept C142724271 @default.
- W4366998167 hasConcept C1491633281 @default.
- W4366998167 hasConcept C150194340 @default.
- W4366998167 hasConcept C151730666 @default.
- W4366998167 hasConcept C162317418 @default.
- W4366998167 hasConcept C2779343474 @default.
- W4366998167 hasConcept C2780192828 @default.
- W4366998167 hasConcept C502942594 @default.
- W4366998167 hasConcept C54355233 @default.
- W4366998167 hasConcept C555283112 @default.
- W4366998167 hasConcept C70721500 @default.
- W4366998167 hasConcept C71924100 @default.
- W4366998167 hasConcept C86803240 @default.
- W4366998167 hasConceptScore W4366998167C104317684 @default.
- W4366998167 hasConceptScore W4366998167C121608353 @default.
- W4366998167 hasConceptScore W4366998167C127716648 @default.
- W4366998167 hasConceptScore W4366998167C142724271 @default.
- W4366998167 hasConceptScore W4366998167C1491633281 @default.
- W4366998167 hasConceptScore W4366998167C150194340 @default.
- W4366998167 hasConceptScore W4366998167C151730666 @default.
- W4366998167 hasConceptScore W4366998167C162317418 @default.
- W4366998167 hasConceptScore W4366998167C2779343474 @default.
- W4366998167 hasConceptScore W4366998167C2780192828 @default.