Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998330> ?p ?o ?g. }
- W4366998330 abstract "Abstract Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold’s capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures." @default.
- W4366998330 created "2023-04-27" @default.
- W4366998330 creator A5009383312 @default.
- W4366998330 creator A5009895447 @default.
- W4366998330 creator A5014624926 @default.
- W4366998330 creator A5063532782 @default.
- W4366998330 date "2023-04-25" @default.
- W4366998330 modified "2023-10-15" @default.
- W4366998330 title "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies" @default.
- W4366998330 cites W1891993075 @default.
- W4366998330 cites W1968091806 @default.
- W4366998330 cites W1993928780 @default.
- W4366998330 cites W2031132894 @default.
- W4366998330 cites W2036808217 @default.
- W4366998330 cites W2110505462 @default.
- W4366998330 cites W2116275717 @default.
- W4366998330 cites W2134668367 @default.
- W4366998330 cites W2154135618 @default.
- W4366998330 cites W2344483747 @default.
- W4366998330 cites W2412035302 @default.
- W4366998330 cites W2606439133 @default.
- W4366998330 cites W2949223833 @default.
- W4366998330 cites W2950118240 @default.
- W4366998330 cites W2950954328 @default.
- W4366998330 cites W2951119766 @default.
- W4366998330 cites W2953008890 @default.
- W4366998330 cites W2953176058 @default.
- W4366998330 cites W2969351103 @default.
- W4366998330 cites W3042825269 @default.
- W4366998330 cites W3111174583 @default.
- W4366998330 cites W3119296790 @default.
- W4366998330 cites W3134095091 @default.
- W4366998330 cites W3134186384 @default.
- W4366998330 cites W3136819235 @default.
- W4366998330 cites W3146944767 @default.
- W4366998330 cites W3154275519 @default.
- W4366998330 cites W3162614523 @default.
- W4366998330 cites W3175871743 @default.
- W4366998330 cites W3177500196 @default.
- W4366998330 cites W3177828909 @default.
- W4366998330 cites W3182197846 @default.
- W4366998330 cites W3186179742 @default.
- W4366998330 cites W3187966659 @default.
- W4366998330 cites W3190206472 @default.
- W4366998330 cites W3192545069 @default.
- W4366998330 cites W3193681478 @default.
- W4366998330 cites W3198731203 @default.
- W4366998330 cites W3202105508 @default.
- W4366998330 cites W3209368428 @default.
- W4366998330 cites W4200079908 @default.
- W4366998330 cites W4200425120 @default.
- W4366998330 cites W4210494137 @default.
- W4366998330 cites W4210520848 @default.
- W4366998330 cites W4220757565 @default.
- W4366998330 cites W4220840971 @default.
- W4366998330 cites W4225246898 @default.
- W4366998330 cites W4226108318 @default.
- W4366998330 cites W4280625391 @default.
- W4366998330 cites W4281708617 @default.
- W4366998330 cites W4281790889 @default.
- W4366998330 cites W4282970464 @default.
- W4366998330 cites W4283068487 @default.
- W4366998330 cites W4286488966 @default.
- W4366998330 cites W4291165742 @default.
- W4366998330 cites W4300861364 @default.
- W4366998330 cites W4307839767 @default.
- W4366998330 cites W4318071656 @default.
- W4366998330 cites W57196929 @default.
- W4366998330 cites W95014119 @default.
- W4366998330 doi "https://doi.org/10.1038/s41467-023-38063-x" @default.
- W4366998330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37185622" @default.
- W4366998330 hasPublicationYear "2023" @default.
- W4366998330 type Work @default.
- W4366998330 citedByCount "26" @default.
- W4366998330 countsByYear W43669983302023 @default.
- W4366998330 crossrefType "journal-article" @default.
- W4366998330 hasAuthorship W4366998330A5009383312 @default.
- W4366998330 hasAuthorship W4366998330A5009895447 @default.
- W4366998330 hasAuthorship W4366998330A5014624926 @default.
- W4366998330 hasAuthorship W4366998330A5063532782 @default.
- W4366998330 hasBestOaLocation W43669983301 @default.
- W4366998330 hasConcept C154945302 @default.
- W4366998330 hasConcept C159654299 @default.
- W4366998330 hasConcept C177264268 @default.
- W4366998330 hasConcept C199360897 @default.
- W4366998330 hasConcept C41008148 @default.
- W4366998330 hasConcept C54355233 @default.
- W4366998330 hasConcept C70721500 @default.
- W4366998330 hasConcept C81566733 @default.
- W4366998330 hasConcept C86803240 @default.
- W4366998330 hasConceptScore W4366998330C154945302 @default.
- W4366998330 hasConceptScore W4366998330C159654299 @default.
- W4366998330 hasConceptScore W4366998330C177264268 @default.
- W4366998330 hasConceptScore W4366998330C199360897 @default.
- W4366998330 hasConceptScore W4366998330C41008148 @default.
- W4366998330 hasConceptScore W4366998330C54355233 @default.
- W4366998330 hasConceptScore W4366998330C70721500 @default.
- W4366998330 hasConceptScore W4366998330C81566733 @default.
- W4366998330 hasConceptScore W4366998330C86803240 @default.
- W4366998330 hasFunder F4320332161 @default.