Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998410> ?p ?o ?g. }
- W4366998410 endingPage "8" @default.
- W4366998410 startingPage "1" @default.
- W4366998410 abstract "Green synthesis and metal oxide composites have attracted much attention from researchers of industry and academia. As a typical application of green synthesis and metal oxide composites, the continuous change of industrial technology and the continuous improvement of the social and economic level, the demand for oil and gas are also increasing. However, the spatial gap between the place of origin and the place of demand for oil and gas resources is large, so the long-distance oil and gas pipeline came into being. However, under the action of time, coupled with the corrosion effect of the soil due to deep burial, some pipelines have serious aging and corrosion phenomena. Therefore, in order to give corresponding guarantees for economic development, we need to conduct in-depth research and analysis of the corrosion of oil and gas long-distance pipelines and give effective solutions. In this paper, the corrosion rate prediction of buried oil and gas pipelines is studied in Changqing gas field. By improving the inertial weights and learning factors of the traditional particle swarm algorithm, the parameters of the generalized regression neural network are optimized and selected, and the corrosion rate prediction model of buried pipelines is finally constructed. Comparative analysis with other swarm intelligence algorithms shows that the improved particle swarm algorithm has stronger convergence ability and higher prediction accuracy than the BP model and SVM model. In addition, based on the detection data collected at the site of the gathering and transportation pipeline in Changqing gas field, this paper uses the extreme value distribution theory and the local corrosion progress formula to establish a prediction model for the residual life of corrosion of buried pipelines. The model established in this paper can effectively determine the risk pipe segment of buried pipeline and provide a decision-making basis for pipeline management departments. The work provides an important application guidance to green synthesis and metal oxide composites." @default.
- W4366998410 created "2023-04-27" @default.
- W4366998410 creator A5000046177 @default.
- W4366998410 creator A5010096252 @default.
- W4366998410 creator A5012011100 @default.
- W4366998410 creator A5039893934 @default.
- W4366998410 creator A5052590910 @default.
- W4366998410 creator A5081675173 @default.
- W4366998410 date "2023-04-25" @default.
- W4366998410 modified "2023-09-23" @default.
- W4366998410 title "Prediction of Chemical Corrosion Rate and Remaining Life of Buried Oil and Gas Pipelines in Changqing Gas Field" @default.
- W4366998410 cites W1970850405 @default.
- W4366998410 cites W2022593965 @default.
- W4366998410 cites W2054959481 @default.
- W4366998410 cites W2590010244 @default.
- W4366998410 cites W2745608832 @default.
- W4366998410 cites W2794752859 @default.
- W4366998410 cites W2901381230 @default.
- W4366998410 cites W2934430710 @default.
- W4366998410 cites W2958543115 @default.
- W4366998410 cites W2963099633 @default.
- W4366998410 cites W3016207130 @default.
- W4366998410 cites W3092595138 @default.
- W4366998410 cites W3107062901 @default.
- W4366998410 cites W3119241231 @default.
- W4366998410 cites W3121874127 @default.
- W4366998410 cites W3147307062 @default.
- W4366998410 cites W3171055674 @default.
- W4366998410 cites W3196820725 @default.
- W4366998410 cites W3206796450 @default.
- W4366998410 cites W4224436766 @default.
- W4366998410 cites W4280566185 @default.
- W4366998410 cites W4283066346 @default.
- W4366998410 doi "https://doi.org/10.1155/2023/7296454" @default.
- W4366998410 hasPublicationYear "2023" @default.
- W4366998410 type Work @default.
- W4366998410 citedByCount "0" @default.
- W4366998410 crossrefType "journal-article" @default.
- W4366998410 hasAuthorship W4366998410A5000046177 @default.
- W4366998410 hasAuthorship W4366998410A5010096252 @default.
- W4366998410 hasAuthorship W4366998410A5012011100 @default.
- W4366998410 hasAuthorship W4366998410A5039893934 @default.
- W4366998410 hasAuthorship W4366998410A5052590910 @default.
- W4366998410 hasAuthorship W4366998410A5081675173 @default.
- W4366998410 hasBestOaLocation W43669984101 @default.
- W4366998410 hasConcept C113740612 @default.
- W4366998410 hasConcept C11413529 @default.
- W4366998410 hasConcept C127413603 @default.
- W4366998410 hasConcept C154945302 @default.
- W4366998410 hasConcept C175309249 @default.
- W4366998410 hasConcept C178790620 @default.
- W4366998410 hasConcept C185592680 @default.
- W4366998410 hasConcept C20625102 @default.
- W4366998410 hasConcept C2776364302 @default.
- W4366998410 hasConcept C39432304 @default.
- W4366998410 hasConcept C41008148 @default.
- W4366998410 hasConcept C43521106 @default.
- W4366998410 hasConcept C50644808 @default.
- W4366998410 hasConcept C59427239 @default.
- W4366998410 hasConcept C68189081 @default.
- W4366998410 hasConcept C78519656 @default.
- W4366998410 hasConcept C78762247 @default.
- W4366998410 hasConcept C85617194 @default.
- W4366998410 hasConcept C87717796 @default.
- W4366998410 hasConceptScore W4366998410C113740612 @default.
- W4366998410 hasConceptScore W4366998410C11413529 @default.
- W4366998410 hasConceptScore W4366998410C127413603 @default.
- W4366998410 hasConceptScore W4366998410C154945302 @default.
- W4366998410 hasConceptScore W4366998410C175309249 @default.
- W4366998410 hasConceptScore W4366998410C178790620 @default.
- W4366998410 hasConceptScore W4366998410C185592680 @default.
- W4366998410 hasConceptScore W4366998410C20625102 @default.
- W4366998410 hasConceptScore W4366998410C2776364302 @default.
- W4366998410 hasConceptScore W4366998410C39432304 @default.
- W4366998410 hasConceptScore W4366998410C41008148 @default.
- W4366998410 hasConceptScore W4366998410C43521106 @default.
- W4366998410 hasConceptScore W4366998410C50644808 @default.
- W4366998410 hasConceptScore W4366998410C59427239 @default.
- W4366998410 hasConceptScore W4366998410C68189081 @default.
- W4366998410 hasConceptScore W4366998410C78519656 @default.
- W4366998410 hasConceptScore W4366998410C78762247 @default.
- W4366998410 hasConceptScore W4366998410C85617194 @default.
- W4366998410 hasConceptScore W4366998410C87717796 @default.
- W4366998410 hasLocation W43669984101 @default.
- W4366998410 hasOpenAccess W4366998410 @default.
- W4366998410 hasPrimaryLocation W43669984101 @default.
- W4366998410 hasRelatedWork W202060193 @default.
- W4366998410 hasRelatedWork W2321637392 @default.
- W4366998410 hasRelatedWork W2348467737 @default.
- W4366998410 hasRelatedWork W2358440125 @default.
- W4366998410 hasRelatedWork W2386047604 @default.
- W4366998410 hasRelatedWork W2389437010 @default.
- W4366998410 hasRelatedWork W2770155441 @default.
- W4366998410 hasRelatedWork W2784087757 @default.
- W4366998410 hasRelatedWork W3137864472 @default.
- W4366998410 hasRelatedWork W2314611533 @default.
- W4366998410 hasVolume "2023" @default.
- W4366998410 isParatext "false" @default.