Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998892> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4366998892 abstract "Artificial Intelligence (AI) and machine learning have revolutionized society, impacting everything from search engines and media consumption to loan approval processes. These algorithms are powered by data and can solve problems that have been impossible for humans to solve. In the health sector, the use of AI has been growing exponentially, and investments in data collection and open data are crucial for its progress. The thesis discussed in the article uses ML models on open data sets to address various health-related questions. In chapter 1, the focus is on sudden infant death syndrome (SIDS) and sudden unexpected infant death (SUID) and the effect of maternal smoking during pregnancy. By using a glass-box model known as generalized additive models (GAMs), the authors found that SUID risk doubles with any maternal smoking during pregnancy, and each cigarette increases the odds by 0.07, with 22% of SUID deaths in the United States attributed to maternal smoking. In chapters 2 and 3, the authors differentiate between two distinct subpopulations of SUID deaths, depending on the age of the infant at the time of death. In chapter 3, the authors focus on sudden unexpected postnatal collapse (SUPC), a subcategory of SUID, and found that SUPC deaths differed statistically from SUID deaths occurring from 7-364 days of age, highlighting the need for adequate nurse staffing during the immediate recovery period and postpartum stay. Chapters 4 and 5 focus on COVID-19 and the use of open data to infer causality from observational data using synthetic controls and Bayesian structural time series. Chapter 4 analyzes the relationship between vaccination and reducing COVID-19 deaths in Washington state, finding a 27.1% decrease in deaths compared to the synthetic control. In chapter 5, the authors analyze the association between COVID-19 public health measures and the epidemiology of infectious conjunctivitis, finding a 34% decrease in search activity and a 37% decrease in emergency department encounters for infectious conjunctivitis after the adoption of COVID-19-associated public health measures. In conclusion, the use of AI and machine learning in health has immense potential, but investments in data collection and open data are essential. The thesis discussed in the article shows how machine learning can be used to address critical health-related questions and underscores the need for continued investment in this field. AI in health is still in its early stages, and we can expect further advancements in the future." @default.
- W4366998892 created "2023-04-27" @default.
- W4366998892 creator A5079004023 @default.
- W4366998892 date "2023-04-25" @default.
- W4366998892 modified "2023-09-30" @default.
- W4366998892 title "AI methods and their application to health and prevention using open data." @default.
- W4366998892 doi "https://doi.org/10.5463/thesis.172" @default.
- W4366998892 hasPublicationYear "2023" @default.
- W4366998892 type Work @default.
- W4366998892 citedByCount "0" @default.
- W4366998892 crossrefType "dissertation" @default.
- W4366998892 hasAuthorship W4366998892A5079004023 @default.
- W4366998892 hasBestOaLocation W43669988921 @default.
- W4366998892 hasConcept C112299071 @default.
- W4366998892 hasConcept C126322002 @default.
- W4366998892 hasConcept C142724271 @default.
- W4366998892 hasConcept C143095724 @default.
- W4366998892 hasConcept C151956035 @default.
- W4366998892 hasConcept C187212893 @default.
- W4366998892 hasConcept C23131810 @default.
- W4366998892 hasConcept C2776283161 @default.
- W4366998892 hasConcept C2779234561 @default.
- W4366998892 hasConcept C2908647359 @default.
- W4366998892 hasConcept C2987955292 @default.
- W4366998892 hasConcept C54355233 @default.
- W4366998892 hasConcept C71924100 @default.
- W4366998892 hasConcept C86803240 @default.
- W4366998892 hasConcept C99454951 @default.
- W4366998892 hasConceptScore W4366998892C112299071 @default.
- W4366998892 hasConceptScore W4366998892C126322002 @default.
- W4366998892 hasConceptScore W4366998892C142724271 @default.
- W4366998892 hasConceptScore W4366998892C143095724 @default.
- W4366998892 hasConceptScore W4366998892C151956035 @default.
- W4366998892 hasConceptScore W4366998892C187212893 @default.
- W4366998892 hasConceptScore W4366998892C23131810 @default.
- W4366998892 hasConceptScore W4366998892C2776283161 @default.
- W4366998892 hasConceptScore W4366998892C2779234561 @default.
- W4366998892 hasConceptScore W4366998892C2908647359 @default.
- W4366998892 hasConceptScore W4366998892C2987955292 @default.
- W4366998892 hasConceptScore W4366998892C54355233 @default.
- W4366998892 hasConceptScore W4366998892C71924100 @default.
- W4366998892 hasConceptScore W4366998892C86803240 @default.
- W4366998892 hasConceptScore W4366998892C99454951 @default.
- W4366998892 hasLocation W43669988921 @default.
- W4366998892 hasOpenAccess W4366998892 @default.
- W4366998892 hasPrimaryLocation W43669988921 @default.
- W4366998892 hasRelatedWork W1811659224 @default.
- W4366998892 hasRelatedWork W2001342654 @default.
- W4366998892 hasRelatedWork W2029453455 @default.
- W4366998892 hasRelatedWork W2107660515 @default.
- W4366998892 hasRelatedWork W2140136778 @default.
- W4366998892 hasRelatedWork W2167211323 @default.
- W4366998892 hasRelatedWork W2606056683 @default.
- W4366998892 hasRelatedWork W2951688176 @default.
- W4366998892 hasRelatedWork W4280574876 @default.
- W4366998892 hasRelatedWork W4298100578 @default.
- W4366998892 isParatext "false" @default.
- W4366998892 isRetracted "false" @default.
- W4366998892 workType "dissertation" @default.