Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366998893> ?p ?o ?g. }
- W4366998893 abstract "To recognize and address various sources of bias essential for algorithmic fairness and trustworthiness and to contribute to a just and equitable deployment of AI in medical imaging, there is an increasing interest in developing medical imaging-based machine learning methods, also known as medical imaging artificial intelligence (AI), for the detection, diagnosis, prognosis, and risk assessment of disease with the goal of clinical implementation. These tools are intended to help improve traditional human decision-making in medical imaging. However, biases introduced in the steps toward clinical deployment may impede their intended function, potentially exacerbating inequities. Specifically, medical imaging AI can propagate or amplify biases introduced in the many steps from model inception to deployment, resulting in a systematic difference in the treatment of different groups.Our multi-institutional team included medical physicists, medical imaging artificial intelligence/machine learning (AI/ML) researchers, experts in AI/ML bias, statisticians, physicians, and scientists from regulatory bodies. We identified sources of bias in AI/ML, mitigation strategies for these biases, and developed recommendations for best practices in medical imaging AI/ML development.Five main steps along the roadmap of medical imaging AI/ML were identified: (1) data collection, (2) data preparation and annotation, (3) model development, (4) model evaluation, and (5) model deployment. Within these steps, or bias categories, we identified 29 sources of potential bias, many of which can impact multiple steps, as well as mitigation strategies.Our findings provide a valuable resource to researchers, clinicians, and the public at large." @default.
- W4366998893 created "2023-04-27" @default.
- W4366998893 creator A5010335705 @default.
- W4366998893 creator A5024321936 @default.
- W4366998893 creator A5032409695 @default.
- W4366998893 creator A5039535916 @default.
- W4366998893 creator A5042141831 @default.
- W4366998893 creator A5046316585 @default.
- W4366998893 creator A5047083825 @default.
- W4366998893 creator A5049042648 @default.
- W4366998893 creator A5073468417 @default.
- W4366998893 creator A5076075666 @default.
- W4366998893 creator A5076598220 @default.
- W4366998893 creator A5087731845 @default.
- W4366998893 date "2023-04-26" @default.
- W4366998893 modified "2023-10-18" @default.
- W4366998893 title "Toward fairness in artificial intelligence for medical image analysis: identification and mitigation of potential biases in the roadmap from data collection to model deployment" @default.
- W4366998893 cites W1549690113 @default.
- W4366998893 cites W1979004942 @default.
- W4366998893 cites W1987266298 @default.
- W4366998893 cites W2011805874 @default.
- W4366998893 cites W2046811610 @default.
- W4366998893 cites W2072484199 @default.
- W4366998893 cites W2082376914 @default.
- W4366998893 cites W2107265013 @default.
- W4366998893 cites W2130653110 @default.
- W4366998893 cites W2137537915 @default.
- W4366998893 cites W2148347694 @default.
- W4366998893 cites W2188214922 @default.
- W4366998893 cites W2281090488 @default.
- W4366998893 cites W2563852449 @default.
- W4366998893 cites W2601844346 @default.
- W4366998893 cites W2902802452 @default.
- W4366998893 cites W2907554860 @default.
- W4366998893 cites W2907638671 @default.
- W4366998893 cites W2910707576 @default.
- W4366998893 cites W2979386453 @default.
- W4366998893 cites W2997449172 @default.
- W4366998893 cites W3011716991 @default.
- W4366998893 cites W3013294478 @default.
- W4366998893 cites W3035885149 @default.
- W4366998893 cites W3049757379 @default.
- W4366998893 cites W3083349471 @default.
- W4366998893 cites W3105992983 @default.
- W4366998893 cites W3130608143 @default.
- W4366998893 cites W3161310076 @default.
- W4366998893 cites W3166254754 @default.
- W4366998893 cites W3201109340 @default.
- W4366998893 cites W3203985735 @default.
- W4366998893 cites W3206840963 @default.
- W4366998893 cites W4200191097 @default.
- W4366998893 cites W4210788416 @default.
- W4366998893 cites W4220753950 @default.
- W4366998893 cites W4221013844 @default.
- W4366998893 cites W4224441431 @default.
- W4366998893 cites W4224879845 @default.
- W4366998893 cites W4229061099 @default.
- W4366998893 cites W4248217291 @default.
- W4366998893 cites W4280519765 @default.
- W4366998893 cites W4292958735 @default.
- W4366998893 cites W4293004928 @default.
- W4366998893 cites W4293004949 @default.
- W4366998893 cites W4294908076 @default.
- W4366998893 cites W4322757179 @default.
- W4366998893 doi "https://doi.org/10.1117/1.jmi.10.6.061104" @default.
- W4366998893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37125409" @default.
- W4366998893 hasPublicationYear "2023" @default.
- W4366998893 type Work @default.
- W4366998893 citedByCount "5" @default.
- W4366998893 countsByYear W43669988932023 @default.
- W4366998893 crossrefType "journal-article" @default.
- W4366998893 hasAuthorship W4366998893A5010335705 @default.
- W4366998893 hasAuthorship W4366998893A5024321936 @default.
- W4366998893 hasAuthorship W4366998893A5032409695 @default.
- W4366998893 hasAuthorship W4366998893A5039535916 @default.
- W4366998893 hasAuthorship W4366998893A5042141831 @default.
- W4366998893 hasAuthorship W4366998893A5046316585 @default.
- W4366998893 hasAuthorship W4366998893A5047083825 @default.
- W4366998893 hasAuthorship W4366998893A5049042648 @default.
- W4366998893 hasAuthorship W4366998893A5073468417 @default.
- W4366998893 hasAuthorship W4366998893A5076075666 @default.
- W4366998893 hasAuthorship W4366998893A5076598220 @default.
- W4366998893 hasAuthorship W4366998893A5087731845 @default.
- W4366998893 hasBestOaLocation W43669988931 @default.
- W4366998893 hasConcept C105339364 @default.
- W4366998893 hasConcept C105795698 @default.
- W4366998893 hasConcept C111919701 @default.
- W4366998893 hasConcept C112930515 @default.
- W4366998893 hasConcept C116834253 @default.
- W4366998893 hasConcept C119857082 @default.
- W4366998893 hasConcept C133462117 @default.
- W4366998893 hasConcept C154945302 @default.
- W4366998893 hasConcept C206345919 @default.
- W4366998893 hasConcept C2522767166 @default.
- W4366998893 hasConcept C31258907 @default.
- W4366998893 hasConcept C31601959 @default.
- W4366998893 hasConcept C33923547 @default.
- W4366998893 hasConcept C41008148 @default.
- W4366998893 hasConcept C59822182 @default.
- W4366998893 hasConcept C71924100 @default.