Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366999280> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4366999280 abstract "Finding the distribution of the velocities and pressures of a fluid (by solving the Navier-Stokes equations) is a principal task in the chemical, energy, and pharmaceutical industries, as well as in mechanical engineering and the design of pipeline systems. With existing solvers, such as OpenFOAM and Ansys, simulations of fluid dynamics in intricate geometries are computationally expensive and require re-simulation whenever the geometric parameters or the initial and boundary conditions are altered. Physics-informed neural networks (PINNs) are a promising tool for simulating fluid flows in complex geometries, as they can adapt to changes in the geometry and mesh definitions, allowing for generalization across different shapes. We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers. Our approach combines the expressive power of a quantum model with the flexibility of a PINN, resulting in a 21% higher accuracy compared to a purely classical neural network. Our findings highlight the potential of machine learning approaches, and in particular quantum PINNs, for complex shape optimization tasks in computational fluid dynamics. By improving the accuracy of fluid simulations in complex geometries, our research using quantum PINNs contributes to the development of more efficient and reliable fluid dynamics solvers." @default.
- W4366999280 created "2023-04-27" @default.
- W4366999280 creator A5005507484 @default.
- W4366999280 creator A5016058393 @default.
- W4366999280 creator A5044243560 @default.
- W4366999280 creator A5053517789 @default.
- W4366999280 creator A5073136410 @default.
- W4366999280 creator A5079807084 @default.
- W4366999280 creator A5086295021 @default.
- W4366999280 date "2023-04-21" @default.
- W4366999280 modified "2023-10-01" @default.
- W4366999280 title "Quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes" @default.
- W4366999280 doi "https://doi.org/10.48550/arxiv.2304.11247" @default.
- W4366999280 hasPublicationYear "2023" @default.
- W4366999280 type Work @default.
- W4366999280 citedByCount "0" @default.
- W4366999280 crossrefType "posted-content" @default.
- W4366999280 hasAuthorship W4366999280A5005507484 @default.
- W4366999280 hasAuthorship W4366999280A5016058393 @default.
- W4366999280 hasAuthorship W4366999280A5044243560 @default.
- W4366999280 hasAuthorship W4366999280A5053517789 @default.
- W4366999280 hasAuthorship W4366999280A5073136410 @default.
- W4366999280 hasAuthorship W4366999280A5079807084 @default.
- W4366999280 hasAuthorship W4366999280A5086295021 @default.
- W4366999280 hasBestOaLocation W43669992801 @default.
- W4366999280 hasConcept C105795698 @default.
- W4366999280 hasConcept C121332964 @default.
- W4366999280 hasConcept C121864883 @default.
- W4366999280 hasConcept C154945302 @default.
- W4366999280 hasConcept C1633027 @default.
- W4366999280 hasConcept C2780598303 @default.
- W4366999280 hasConcept C33923547 @default.
- W4366999280 hasConcept C41008148 @default.
- W4366999280 hasConcept C459310 @default.
- W4366999280 hasConcept C50644808 @default.
- W4366999280 hasConcept C57879066 @default.
- W4366999280 hasConcept C62520636 @default.
- W4366999280 hasConcept C76563973 @default.
- W4366999280 hasConcept C84114770 @default.
- W4366999280 hasConcept C90278072 @default.
- W4366999280 hasConceptScore W4366999280C105795698 @default.
- W4366999280 hasConceptScore W4366999280C121332964 @default.
- W4366999280 hasConceptScore W4366999280C121864883 @default.
- W4366999280 hasConceptScore W4366999280C154945302 @default.
- W4366999280 hasConceptScore W4366999280C1633027 @default.
- W4366999280 hasConceptScore W4366999280C2780598303 @default.
- W4366999280 hasConceptScore W4366999280C33923547 @default.
- W4366999280 hasConceptScore W4366999280C41008148 @default.
- W4366999280 hasConceptScore W4366999280C459310 @default.
- W4366999280 hasConceptScore W4366999280C50644808 @default.
- W4366999280 hasConceptScore W4366999280C57879066 @default.
- W4366999280 hasConceptScore W4366999280C62520636 @default.
- W4366999280 hasConceptScore W4366999280C76563973 @default.
- W4366999280 hasConceptScore W4366999280C84114770 @default.
- W4366999280 hasConceptScore W4366999280C90278072 @default.
- W4366999280 hasLocation W43669992801 @default.
- W4366999280 hasOpenAccess W4366999280 @default.
- W4366999280 hasPrimaryLocation W43669992801 @default.
- W4366999280 hasRelatedWork W1162991569 @default.
- W4366999280 hasRelatedWork W1993462785 @default.
- W4366999280 hasRelatedWork W2081912061 @default.
- W4366999280 hasRelatedWork W2102540202 @default.
- W4366999280 hasRelatedWork W2272525727 @default.
- W4366999280 hasRelatedWork W2391726020 @default.
- W4366999280 hasRelatedWork W2559921079 @default.
- W4366999280 hasRelatedWork W2794251297 @default.
- W4366999280 hasRelatedWork W2985802862 @default.
- W4366999280 hasRelatedWork W3040616745 @default.
- W4366999280 isParatext "false" @default.
- W4366999280 isRetracted "false" @default.
- W4366999280 workType "article" @default.