Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366999430> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4366999430 abstract "Provisioning dynamic machine learning (ML) inference as a service for artificial intelligence (AI) applications of edge devices faces many challenges, including the trade-off among accuracy loss, carbon emission, and unknown future costs. Besides, many governments are launching carbon emission rights (CER) for operators to reduce carbon emissions further to reverse climate change. Facing these challenges, to achieve carbon-aware ML task offloading under limited carbon emission rights thus to achieve green edge AI, we establish a joint ML task offloading and CER purchasing problem, intending to minimize the accuracy loss under the long-term time-averaged cost budget of purchasing the required CER. However, considering the uncertainty of the resource prices, the CER purchasing prices, the carbon intensity of sites, and ML tasks' arrivals, it is hard to decide the optimal policy online over a long-running period time. To overcome this difficulty, we leverage the two-timescale Lyapunov optimization technique, of which the $T$-slot drift-plus-penalty methodology inspires us to propose an online algorithm that purchases CER in multiple timescales (on-preserved in carbon future market and on-demanded in the carbon spot market) and makes decisions about where to offload ML tasks. Considering the NP-hardness of the $T$-slot problems, we further propose the resource-restricted randomized dependent rounding algorithm to help to gain the near-optimal solution with no help of any future information. Our theoretical analysis and extensive simulation results driven by the real carbon intensity trace show the superior performance of the proposed algorithms." @default.
- W4366999430 created "2023-04-27" @default.
- W4366999430 creator A5021305087 @default.
- W4366999430 creator A5042785211 @default.
- W4366999430 creator A5078909773 @default.
- W4366999430 creator A5080529523 @default.
- W4366999430 date "2023-04-22" @default.
- W4366999430 modified "2023-10-01" @default.
- W4366999430 title "Towards Carbon-Neutral Edge Computing: Greening Edge AI by Harnessing Spot and Future Carbon Markets" @default.
- W4366999430 doi "https://doi.org/10.48550/arxiv.2304.11374" @default.
- W4366999430 hasPublicationYear "2023" @default.
- W4366999430 type Work @default.
- W4366999430 citedByCount "0" @default.
- W4366999430 crossrefType "posted-content" @default.
- W4366999430 hasAuthorship W4366999430A5021305087 @default.
- W4366999430 hasAuthorship W4366999430A5042785211 @default.
- W4366999430 hasAuthorship W4366999430A5078909773 @default.
- W4366999430 hasAuthorship W4366999430A5080529523 @default.
- W4366999430 hasBestOaLocation W43669994301 @default.
- W4366999430 hasConcept C104779481 @default.
- W4366999430 hasConcept C11413529 @default.
- W4366999430 hasConcept C126255220 @default.
- W4366999430 hasConcept C134560507 @default.
- W4366999430 hasConcept C140205800 @default.
- W4366999430 hasConcept C154945302 @default.
- W4366999430 hasConcept C162307627 @default.
- W4366999430 hasConcept C162324750 @default.
- W4366999430 hasConcept C18903297 @default.
- W4366999430 hasConcept C21547014 @default.
- W4366999430 hasConcept C2778813691 @default.
- W4366999430 hasConcept C2779200991 @default.
- W4366999430 hasConcept C33923547 @default.
- W4366999430 hasConcept C41008148 @default.
- W4366999430 hasConcept C47737302 @default.
- W4366999430 hasConcept C86803240 @default.
- W4366999430 hasConceptScore W4366999430C104779481 @default.
- W4366999430 hasConceptScore W4366999430C11413529 @default.
- W4366999430 hasConceptScore W4366999430C126255220 @default.
- W4366999430 hasConceptScore W4366999430C134560507 @default.
- W4366999430 hasConceptScore W4366999430C140205800 @default.
- W4366999430 hasConceptScore W4366999430C154945302 @default.
- W4366999430 hasConceptScore W4366999430C162307627 @default.
- W4366999430 hasConceptScore W4366999430C162324750 @default.
- W4366999430 hasConceptScore W4366999430C18903297 @default.
- W4366999430 hasConceptScore W4366999430C21547014 @default.
- W4366999430 hasConceptScore W4366999430C2778813691 @default.
- W4366999430 hasConceptScore W4366999430C2779200991 @default.
- W4366999430 hasConceptScore W4366999430C33923547 @default.
- W4366999430 hasConceptScore W4366999430C41008148 @default.
- W4366999430 hasConceptScore W4366999430C47737302 @default.
- W4366999430 hasConceptScore W4366999430C86803240 @default.
- W4366999430 hasLocation W43669994301 @default.
- W4366999430 hasOpenAccess W4366999430 @default.
- W4366999430 hasPrimaryLocation W43669994301 @default.
- W4366999430 hasRelatedWork W2013862065 @default.
- W4366999430 hasRelatedWork W2047727269 @default.
- W4366999430 hasRelatedWork W2109689654 @default.
- W4366999430 hasRelatedWork W2393534254 @default.
- W4366999430 hasRelatedWork W2568795307 @default.
- W4366999430 hasRelatedWork W3034781859 @default.
- W4366999430 hasRelatedWork W3120540913 @default.
- W4366999430 hasRelatedWork W4211032402 @default.
- W4366999430 hasRelatedWork W4211114494 @default.
- W4366999430 hasRelatedWork W4323365549 @default.
- W4366999430 isParatext "false" @default.
- W4366999430 isRetracted "false" @default.
- W4366999430 workType "article" @default.