Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366999464> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366999464 abstract "This work presents a date-driven user localization framework for single-site massive Multiple-Input-Multiple-Output (MIMO) systems. The framework is trained on a geo-tagged Channel State Information (CSI) dataset. Unlike the state-of-the-art Convolutional Neural Network (CNN) models, which require large training datasets to perform well, our method is specifically designed to operate with small-scale training datasets. This makes our approach more practical for real-world scenarios, where collecting a large amount of data can be challenging. Our proposed FC-AE-GPR framework combines two components: a Fully-Connected Auto-Encoder (FC-AE) and a Gaussian Process Regression (GPR) model. Our results show that the GPR model outperforms the CNN model when presented with small training datasets. However, the training complexity of GPR models can become an issue when the input sample size is large. To address this, we propose using the FC-AE to reduce the sample size by encoding the CSI before training the GPR model. Although the FC-AE model may require a larger training dataset initially, we demonstrate that the FC-AE is scenario independent. This means that it can be utilized in new and unseen scenarios without prior retraining. Therefore, adapting the FC-AE-GPR model to a new scenario requires only retraining the GPR model with a small training dataset." @default.
- W4366999464 created "2023-04-27" @default.
- W4366999464 creator A5047131306 @default.
- W4366999464 creator A5047847605 @default.
- W4366999464 creator A5067098283 @default.
- W4366999464 date "2023-04-22" @default.
- W4366999464 modified "2023-09-24" @default.
- W4366999464 title "CSI-Based Data-driven Localization Frameworking using Small-scale Training Datasets in Single-site MIMO Systems" @default.
- W4366999464 doi "https://doi.org/10.48550/arxiv.2304.11455" @default.
- W4366999464 hasPublicationYear "2023" @default.
- W4366999464 type Work @default.
- W4366999464 citedByCount "0" @default.
- W4366999464 crossrefType "posted-content" @default.
- W4366999464 hasAuthorship W4366999464A5047131306 @default.
- W4366999464 hasAuthorship W4366999464A5047847605 @default.
- W4366999464 hasAuthorship W4366999464A5067098283 @default.
- W4366999464 hasBestOaLocation W43669994641 @default.
- W4366999464 hasConcept C111919701 @default.
- W4366999464 hasConcept C119857082 @default.
- W4366999464 hasConcept C121332964 @default.
- W4366999464 hasConcept C124101348 @default.
- W4366999464 hasConcept C144133560 @default.
- W4366999464 hasConcept C153180895 @default.
- W4366999464 hasConcept C153294291 @default.
- W4366999464 hasConcept C154945302 @default.
- W4366999464 hasConcept C155202549 @default.
- W4366999464 hasConcept C163716315 @default.
- W4366999464 hasConcept C185592680 @default.
- W4366999464 hasConcept C198531522 @default.
- W4366999464 hasConcept C2777211547 @default.
- W4366999464 hasConcept C2778712577 @default.
- W4366999464 hasConcept C41008148 @default.
- W4366999464 hasConcept C43617362 @default.
- W4366999464 hasConcept C554190296 @default.
- W4366999464 hasConcept C61326573 @default.
- W4366999464 hasConcept C62520636 @default.
- W4366999464 hasConcept C71813955 @default.
- W4366999464 hasConcept C76155785 @default.
- W4366999464 hasConcept C81363708 @default.
- W4366999464 hasConcept C81692654 @default.
- W4366999464 hasConcept C98045186 @default.
- W4366999464 hasConceptScore W4366999464C111919701 @default.
- W4366999464 hasConceptScore W4366999464C119857082 @default.
- W4366999464 hasConceptScore W4366999464C121332964 @default.
- W4366999464 hasConceptScore W4366999464C124101348 @default.
- W4366999464 hasConceptScore W4366999464C144133560 @default.
- W4366999464 hasConceptScore W4366999464C153180895 @default.
- W4366999464 hasConceptScore W4366999464C153294291 @default.
- W4366999464 hasConceptScore W4366999464C154945302 @default.
- W4366999464 hasConceptScore W4366999464C155202549 @default.
- W4366999464 hasConceptScore W4366999464C163716315 @default.
- W4366999464 hasConceptScore W4366999464C185592680 @default.
- W4366999464 hasConceptScore W4366999464C198531522 @default.
- W4366999464 hasConceptScore W4366999464C2777211547 @default.
- W4366999464 hasConceptScore W4366999464C2778712577 @default.
- W4366999464 hasConceptScore W4366999464C41008148 @default.
- W4366999464 hasConceptScore W4366999464C43617362 @default.
- W4366999464 hasConceptScore W4366999464C554190296 @default.
- W4366999464 hasConceptScore W4366999464C61326573 @default.
- W4366999464 hasConceptScore W4366999464C62520636 @default.
- W4366999464 hasConceptScore W4366999464C71813955 @default.
- W4366999464 hasConceptScore W4366999464C76155785 @default.
- W4366999464 hasConceptScore W4366999464C81363708 @default.
- W4366999464 hasConceptScore W4366999464C81692654 @default.
- W4366999464 hasConceptScore W4366999464C98045186 @default.
- W4366999464 hasLocation W43669994641 @default.
- W4366999464 hasOpenAccess W4366999464 @default.
- W4366999464 hasPrimaryLocation W43669994641 @default.
- W4366999464 hasRelatedWork W1606946149 @default.
- W4366999464 hasRelatedWork W2059173847 @default.
- W4366999464 hasRelatedWork W2130075347 @default.
- W4366999464 hasRelatedWork W2947789327 @default.
- W4366999464 hasRelatedWork W3093612317 @default.
- W4366999464 hasRelatedWork W3156386097 @default.
- W4366999464 hasRelatedWork W3200945737 @default.
- W4366999464 hasRelatedWork W4212909007 @default.
- W4366999464 hasRelatedWork W4293519094 @default.
- W4366999464 hasRelatedWork W4306887980 @default.
- W4366999464 isParatext "false" @default.
- W4366999464 isRetracted "false" @default.
- W4366999464 workType "article" @default.