Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366999535> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4366999535 abstract "In [Ramanujan J. 52 (2020), 275-290], Romik considered the Taylor expansion of Jacobi's theta function $theta_3(q)$ at $q=e^{-pi}$ and encoded it in an integer sequence $(d(n))_{nge0}$ for which he provided a recursive procedure to compute the terms of the sequence. He observed intriguing behaviour of $d(n)$ modulo primes and prime powers. Here we prove (1) that $d(n)$ eventually vanishes modulo any prime power $p^e$ with $pequiv3$ (mod 4), (2) that $d(n)$ is eventually periodic modulo any prime power $p^e$ with $pequiv1$ (mod 4), and (3) that $d(n)$ is purely periodic modulo any 2-power $2^e$. Our results also provide more detailed information on period length, respectively from when on the sequence vanishes or becomes periodic. The corresponding bounds may not be optimal though, as computer data suggest. Our approach shows that the above congruence properties hold at a much finer, polynomial level." @default.
- W4366999535 created "2023-04-27" @default.
- W4366999535 creator A5040427357 @default.
- W4366999535 creator A5058570102 @default.
- W4366999535 date "2023-04-22" @default.
- W4366999535 modified "2023-09-25" @default.
- W4366999535 title "The congruence properties of Romik's sequence of Taylor.coefficients of Jacobi's theta function $theta_3$" @default.
- W4366999535 doi "https://doi.org/10.48550/arxiv.2304.11471" @default.
- W4366999535 hasPublicationYear "2023" @default.
- W4366999535 type Work @default.
- W4366999535 citedByCount "0" @default.
- W4366999535 crossrefType "posted-content" @default.
- W4366999535 hasAuthorship W4366999535A5040427357 @default.
- W4366999535 hasAuthorship W4366999535A5058570102 @default.
- W4366999535 hasBestOaLocation W43669995351 @default.
- W4366999535 hasConcept C105546189 @default.
- W4366999535 hasConcept C114614502 @default.
- W4366999535 hasConcept C118615104 @default.
- W4366999535 hasConcept C131220774 @default.
- W4366999535 hasConcept C132074034 @default.
- W4366999535 hasConcept C174072685 @default.
- W4366999535 hasConcept C184992742 @default.
- W4366999535 hasConcept C199360897 @default.
- W4366999535 hasConcept C202444582 @default.
- W4366999535 hasConcept C2524010 @default.
- W4366999535 hasConcept C2778112365 @default.
- W4366999535 hasConcept C33923547 @default.
- W4366999535 hasConcept C41008148 @default.
- W4366999535 hasConcept C54355233 @default.
- W4366999535 hasConcept C54732982 @default.
- W4366999535 hasConcept C6026789 @default.
- W4366999535 hasConcept C86803240 @default.
- W4366999535 hasConcept C97137487 @default.
- W4366999535 hasConceptScore W4366999535C105546189 @default.
- W4366999535 hasConceptScore W4366999535C114614502 @default.
- W4366999535 hasConceptScore W4366999535C118615104 @default.
- W4366999535 hasConceptScore W4366999535C131220774 @default.
- W4366999535 hasConceptScore W4366999535C132074034 @default.
- W4366999535 hasConceptScore W4366999535C174072685 @default.
- W4366999535 hasConceptScore W4366999535C184992742 @default.
- W4366999535 hasConceptScore W4366999535C199360897 @default.
- W4366999535 hasConceptScore W4366999535C202444582 @default.
- W4366999535 hasConceptScore W4366999535C2524010 @default.
- W4366999535 hasConceptScore W4366999535C2778112365 @default.
- W4366999535 hasConceptScore W4366999535C33923547 @default.
- W4366999535 hasConceptScore W4366999535C41008148 @default.
- W4366999535 hasConceptScore W4366999535C54355233 @default.
- W4366999535 hasConceptScore W4366999535C54732982 @default.
- W4366999535 hasConceptScore W4366999535C6026789 @default.
- W4366999535 hasConceptScore W4366999535C86803240 @default.
- W4366999535 hasConceptScore W4366999535C97137487 @default.
- W4366999535 hasLocation W43669995351 @default.
- W4366999535 hasOpenAccess W4366999535 @default.
- W4366999535 hasPrimaryLocation W43669995351 @default.
- W4366999535 hasRelatedWork W2124574205 @default.
- W4366999535 hasRelatedWork W2146836238 @default.
- W4366999535 hasRelatedWork W2177966018 @default.
- W4366999535 hasRelatedWork W2243126321 @default.
- W4366999535 hasRelatedWork W2348358318 @default.
- W4366999535 hasRelatedWork W2964242841 @default.
- W4366999535 hasRelatedWork W2981610839 @default.
- W4366999535 hasRelatedWork W3201041336 @default.
- W4366999535 hasRelatedWork W4297677820 @default.
- W4366999535 hasRelatedWork W4302423208 @default.
- W4366999535 isParatext "false" @default.
- W4366999535 isRetracted "false" @default.
- W4366999535 workType "article" @default.