Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367000247> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4367000247 abstract "Knowledge graphs (KGs) have become important auxiliary information for helping recommender systems obtain a good understanding of user preferences. Despite recent advances in KG-based recommender systems, existing methods are prone to suboptimal performance due to the following two drawbacks: 1) current KG-based methods over-emphasize the heterogeneous structural information within a KG and overlook the underlying semantics of its connections, hindering the recommender from distilling the explicit user preferences; and 2) the inherent incompleteness of a KG (i.e., missing facts, relations and entities) will deteriorate the information extracted from KG and weaken the representation learning of recommender systems. To tackle the aforementioned problems, we investigate the potential of jointly incorporating the structural and semantic information within a KG to model user preferences in finer granularity. A new framework for KG-based recommender systems, namely textit{K}nowledge textit{I}nfomax textit{R}ecommender textit{S}ystem with textit{C}ontrastive textit{L}earning (KIRS-CL) is proposed in this paper. Distinct from previous KG-based approaches, KIRS-CL utilizes structural and connectivity information with high-quality item embeddings learned by encoding KG triples with a pre-trained language model. These well-trained entity representations enable KIRS-CL to find the item to recommend via the preference connection between the user and the item. Additionally, to improve the generalizability of our framework, we introduce a contrastive warm-up learning strategy, making it capable of dealing with both warm- and cold-start recommendation scenarios. Extensive experiments on two real-world datasets demonstrate remarkable improvements over state-of-the-art baselines." @default.
- W4367000247 created "2023-04-27" @default.
- W4367000247 creator A5017774638 @default.
- W4367000247 creator A5051219382 @default.
- W4367000247 creator A5064878896 @default.
- W4367000247 creator A5072287452 @default.
- W4367000247 creator A5088492734 @default.
- W4367000247 creator A5090650583 @default.
- W4367000247 date "2023-04-24" @default.
- W4367000247 modified "2023-10-06" @default.
- W4367000247 title "Joint Semantic and Structural Representation Learning for Enhancing User Preference Modelling" @default.
- W4367000247 doi "https://doi.org/10.48550/arxiv.2304.12083" @default.
- W4367000247 hasPublicationYear "2023" @default.
- W4367000247 type Work @default.
- W4367000247 citedByCount "0" @default.
- W4367000247 crossrefType "posted-content" @default.
- W4367000247 hasAuthorship W4367000247A5017774638 @default.
- W4367000247 hasAuthorship W4367000247A5051219382 @default.
- W4367000247 hasAuthorship W4367000247A5064878896 @default.
- W4367000247 hasAuthorship W4367000247A5072287452 @default.
- W4367000247 hasAuthorship W4367000247A5088492734 @default.
- W4367000247 hasAuthorship W4367000247A5090650583 @default.
- W4367000247 hasBestOaLocation W43670002471 @default.
- W4367000247 hasConcept C105795698 @default.
- W4367000247 hasConcept C111472728 @default.
- W4367000247 hasConcept C111919701 @default.
- W4367000247 hasConcept C138885662 @default.
- W4367000247 hasConcept C154945302 @default.
- W4367000247 hasConcept C17744445 @default.
- W4367000247 hasConcept C177774035 @default.
- W4367000247 hasConcept C184337299 @default.
- W4367000247 hasConcept C199360897 @default.
- W4367000247 hasConcept C199539241 @default.
- W4367000247 hasConcept C23123220 @default.
- W4367000247 hasConcept C27158222 @default.
- W4367000247 hasConcept C2776359362 @default.
- W4367000247 hasConcept C2779530757 @default.
- W4367000247 hasConcept C2781249084 @default.
- W4367000247 hasConcept C33923547 @default.
- W4367000247 hasConcept C41008148 @default.
- W4367000247 hasConcept C557471498 @default.
- W4367000247 hasConcept C94625758 @default.
- W4367000247 hasConceptScore W4367000247C105795698 @default.
- W4367000247 hasConceptScore W4367000247C111472728 @default.
- W4367000247 hasConceptScore W4367000247C111919701 @default.
- W4367000247 hasConceptScore W4367000247C138885662 @default.
- W4367000247 hasConceptScore W4367000247C154945302 @default.
- W4367000247 hasConceptScore W4367000247C17744445 @default.
- W4367000247 hasConceptScore W4367000247C177774035 @default.
- W4367000247 hasConceptScore W4367000247C184337299 @default.
- W4367000247 hasConceptScore W4367000247C199360897 @default.
- W4367000247 hasConceptScore W4367000247C199539241 @default.
- W4367000247 hasConceptScore W4367000247C23123220 @default.
- W4367000247 hasConceptScore W4367000247C27158222 @default.
- W4367000247 hasConceptScore W4367000247C2776359362 @default.
- W4367000247 hasConceptScore W4367000247C2779530757 @default.
- W4367000247 hasConceptScore W4367000247C2781249084 @default.
- W4367000247 hasConceptScore W4367000247C33923547 @default.
- W4367000247 hasConceptScore W4367000247C41008148 @default.
- W4367000247 hasConceptScore W4367000247C557471498 @default.
- W4367000247 hasConceptScore W4367000247C94625758 @default.
- W4367000247 hasLocation W43670002471 @default.
- W4367000247 hasOpenAccess W4367000247 @default.
- W4367000247 hasPrimaryLocation W43670002471 @default.
- W4367000247 hasRelatedWork W1559600655 @default.
- W4367000247 hasRelatedWork W1568866260 @default.
- W4367000247 hasRelatedWork W1846541313 @default.
- W4367000247 hasRelatedWork W2276110567 @default.
- W4367000247 hasRelatedWork W2605831827 @default.
- W4367000247 hasRelatedWork W2738717536 @default.
- W4367000247 hasRelatedWork W3088559275 @default.
- W4367000247 hasRelatedWork W3097853387 @default.
- W4367000247 hasRelatedWork W3118374343 @default.
- W4367000247 hasRelatedWork W3214915308 @default.
- W4367000247 isParatext "false" @default.
- W4367000247 isRetracted "false" @default.
- W4367000247 workType "article" @default.