Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367000417> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4367000417 abstract "High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps." @default.
- W4367000417 created "2023-04-27" @default.
- W4367000417 creator A5009020607 @default.
- W4367000417 creator A5015363728 @default.
- W4367000417 creator A5052384632 @default.
- W4367000417 creator A5052961865 @default.
- W4367000417 creator A5062308375 @default.
- W4367000417 date "2023-04-20" @default.
- W4367000417 modified "2023-09-30" @default.
- W4367000417 title "TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning" @default.
- W4367000417 doi "https://doi.org/10.48550/arxiv.2304.12187" @default.
- W4367000417 hasPublicationYear "2023" @default.
- W4367000417 type Work @default.
- W4367000417 citedByCount "0" @default.
- W4367000417 crossrefType "posted-content" @default.
- W4367000417 hasAuthorship W4367000417A5009020607 @default.
- W4367000417 hasAuthorship W4367000417A5015363728 @default.
- W4367000417 hasAuthorship W4367000417A5052384632 @default.
- W4367000417 hasAuthorship W4367000417A5052961865 @default.
- W4367000417 hasAuthorship W4367000417A5062308375 @default.
- W4367000417 hasBestOaLocation W43670004171 @default.
- W4367000417 hasConcept C111919701 @default.
- W4367000417 hasConcept C120665830 @default.
- W4367000417 hasConcept C121332964 @default.
- W4367000417 hasConcept C126255220 @default.
- W4367000417 hasConcept C136197465 @default.
- W4367000417 hasConcept C151730666 @default.
- W4367000417 hasConcept C154945302 @default.
- W4367000417 hasConcept C158622935 @default.
- W4367000417 hasConcept C163258240 @default.
- W4367000417 hasConcept C2775924081 @default.
- W4367000417 hasConcept C2779343474 @default.
- W4367000417 hasConcept C2780799671 @default.
- W4367000417 hasConcept C33923547 @default.
- W4367000417 hasConcept C41008148 @default.
- W4367000417 hasConcept C47446073 @default.
- W4367000417 hasConcept C520434653 @default.
- W4367000417 hasConcept C62520636 @default.
- W4367000417 hasConcept C86803240 @default.
- W4367000417 hasConcept C91575142 @default.
- W4367000417 hasConcept C97541855 @default.
- W4367000417 hasConceptScore W4367000417C111919701 @default.
- W4367000417 hasConceptScore W4367000417C120665830 @default.
- W4367000417 hasConceptScore W4367000417C121332964 @default.
- W4367000417 hasConceptScore W4367000417C126255220 @default.
- W4367000417 hasConceptScore W4367000417C136197465 @default.
- W4367000417 hasConceptScore W4367000417C151730666 @default.
- W4367000417 hasConceptScore W4367000417C154945302 @default.
- W4367000417 hasConceptScore W4367000417C158622935 @default.
- W4367000417 hasConceptScore W4367000417C163258240 @default.
- W4367000417 hasConceptScore W4367000417C2775924081 @default.
- W4367000417 hasConceptScore W4367000417C2779343474 @default.
- W4367000417 hasConceptScore W4367000417C2780799671 @default.
- W4367000417 hasConceptScore W4367000417C33923547 @default.
- W4367000417 hasConceptScore W4367000417C41008148 @default.
- W4367000417 hasConceptScore W4367000417C47446073 @default.
- W4367000417 hasConceptScore W4367000417C520434653 @default.
- W4367000417 hasConceptScore W4367000417C62520636 @default.
- W4367000417 hasConceptScore W4367000417C86803240 @default.
- W4367000417 hasConceptScore W4367000417C91575142 @default.
- W4367000417 hasConceptScore W4367000417C97541855 @default.
- W4367000417 hasLocation W43670004171 @default.
- W4367000417 hasOpenAccess W4367000417 @default.
- W4367000417 hasPrimaryLocation W43670004171 @default.
- W4367000417 hasRelatedWork W2923653485 @default.
- W4367000417 hasRelatedWork W2952472710 @default.
- W4367000417 hasRelatedWork W2957776456 @default.
- W4367000417 hasRelatedWork W3005560120 @default.
- W4367000417 hasRelatedWork W3037422413 @default.
- W4367000417 hasRelatedWork W4206669594 @default.
- W4367000417 hasRelatedWork W4255994452 @default.
- W4367000417 hasRelatedWork W4313305131 @default.
- W4367000417 hasRelatedWork W4319773215 @default.
- W4367000417 hasRelatedWork W4361026739 @default.
- W4367000417 isParatext "false" @default.
- W4367000417 isRetracted "false" @default.
- W4367000417 workType "article" @default.