Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011513> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4367011513 endingPage "94" @default.
- W4367011513 startingPage "75" @default.
- W4367011513 abstract "Despite all their advantages, univariate and multivariate time series models are linear statistical methods subject to significant limitations for characterizing nonlinear relationships. Machine learning models, such as neural networks, have established themselves as a serious alternative to classical statistical models for exploring nonlinear relationships. This chapter introduces recurrent neural networks (e.g., long short-term memory and gated recurrent units) for nonlinear time series forecasting and explains the life cycle of construction time series forecasting using such networks. These networks are designed and trained to forecast Highway Construction Spending (HCS) time series. Also, their forecasting performances are investigated and compared with those of seasonal ARIMA and VEC models. The comparison results show that recurrent neural networks (i.e., long short-term memory and gated recurrent unit networks) can provide higher accuracies in forecasting the long-term variations of HCS than statistical linear time series models based on typical error measures." @default.
- W4367011513 created "2023-04-27" @default.
- W4367011513 creator A5017330607 @default.
- W4367011513 creator A5026807509 @default.
- W4367011513 creator A5042848117 @default.
- W4367011513 creator A5071926892 @default.
- W4367011513 date "2023-01-01" @default.
- W4367011513 modified "2023-10-02" @default.
- W4367011513 title "Construction Forecasting Using Recurrent Neural Networks" @default.
- W4367011513 cites W2042303497 @default.
- W4367011513 cites W2740570963 @default.
- W4367011513 cites W2743096840 @default.
- W4367011513 cites W2901072570 @default.
- W4367011513 cites W4226017353 @default.
- W4367011513 cites W950853366 @default.
- W4367011513 doi "https://doi.org/10.1007/978-3-031-27292-9_5" @default.
- W4367011513 hasPublicationYear "2023" @default.
- W4367011513 type Work @default.
- W4367011513 citedByCount "0" @default.
- W4367011513 crossrefType "book-chapter" @default.
- W4367011513 hasAuthorship W4367011513A5017330607 @default.
- W4367011513 hasAuthorship W4367011513A5026807509 @default.
- W4367011513 hasAuthorship W4367011513A5042848117 @default.
- W4367011513 hasAuthorship W4367011513A5071926892 @default.
- W4367011513 hasConcept C119857082 @default.
- W4367011513 hasConcept C121332964 @default.
- W4367011513 hasConcept C143724316 @default.
- W4367011513 hasConcept C147168706 @default.
- W4367011513 hasConcept C149782125 @default.
- W4367011513 hasConcept C151406439 @default.
- W4367011513 hasConcept C151730666 @default.
- W4367011513 hasConcept C154945302 @default.
- W4367011513 hasConcept C158622935 @default.
- W4367011513 hasConcept C161584116 @default.
- W4367011513 hasConcept C199163554 @default.
- W4367011513 hasConcept C24338571 @default.
- W4367011513 hasConcept C33923547 @default.
- W4367011513 hasConcept C41008148 @default.
- W4367011513 hasConcept C50644808 @default.
- W4367011513 hasConcept C61797465 @default.
- W4367011513 hasConcept C62520636 @default.
- W4367011513 hasConcept C86803240 @default.
- W4367011513 hasConceptScore W4367011513C119857082 @default.
- W4367011513 hasConceptScore W4367011513C121332964 @default.
- W4367011513 hasConceptScore W4367011513C143724316 @default.
- W4367011513 hasConceptScore W4367011513C147168706 @default.
- W4367011513 hasConceptScore W4367011513C149782125 @default.
- W4367011513 hasConceptScore W4367011513C151406439 @default.
- W4367011513 hasConceptScore W4367011513C151730666 @default.
- W4367011513 hasConceptScore W4367011513C154945302 @default.
- W4367011513 hasConceptScore W4367011513C158622935 @default.
- W4367011513 hasConceptScore W4367011513C161584116 @default.
- W4367011513 hasConceptScore W4367011513C199163554 @default.
- W4367011513 hasConceptScore W4367011513C24338571 @default.
- W4367011513 hasConceptScore W4367011513C33923547 @default.
- W4367011513 hasConceptScore W4367011513C41008148 @default.
- W4367011513 hasConceptScore W4367011513C50644808 @default.
- W4367011513 hasConceptScore W4367011513C61797465 @default.
- W4367011513 hasConceptScore W4367011513C62520636 @default.
- W4367011513 hasConceptScore W4367011513C86803240 @default.
- W4367011513 hasLocation W43670115131 @default.
- W4367011513 hasOpenAccess W4367011513 @default.
- W4367011513 hasPrimaryLocation W43670115131 @default.
- W4367011513 hasRelatedWork W189280425 @default.
- W4367011513 hasRelatedWork W2057475276 @default.
- W4367011513 hasRelatedWork W2350758509 @default.
- W4367011513 hasRelatedWork W2413397893 @default.
- W4367011513 hasRelatedWork W2741589215 @default.
- W4367011513 hasRelatedWork W3021958908 @default.
- W4367011513 hasRelatedWork W4317382418 @default.
- W4367011513 hasRelatedWork W4366960586 @default.
- W4367011513 hasRelatedWork W4377137534 @default.
- W4367011513 hasRelatedWork W797951461 @default.
- W4367011513 isParatext "false" @default.
- W4367011513 isRetracted "false" @default.
- W4367011513 workType "book-chapter" @default.