Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011731> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4367011731 endingPage "23" @default.
- W4367011731 startingPage "13" @default.
- W4367011731 abstract "In today’s world of cut-throat competition, where everyone is running an invisible race, we often find ourselves alone amongst the crowd. The advancements in technology are making our lives easier, yet man being a social animal is losing touch with society. As a result, today a huge part of the population is suffering from psychological disorders. Inferiority complex, inability to fulfil dreams, loneliness, etc., are considered to be the common reasons to disturb mental stability, which may further lead to disorders like depression. In extreme cases, depression causes loss of precious lives when an individual decides to commit suicide. Assessing an individual’s mental health in an interactive way with the core help of machine learning is the primary focus of this work. To realize this objective, we have used the most suitable long-short term memory (LSTM) architecture. It is an artificial recurrent neural network (RNN) in the field of deep learning on Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and FastText datasets to get 86% accuracy when fed with model-patient conversational data. Further, we discussed the scope of enhancing cognitive control capabilities over the psychiatric disorders, which may even lead to severe level of depression and suicidal attacks. Here, the proposed system will help to determine the severity level of depression in a person and will help with the recovery process. The system comprises of a wrist-band to measure some biological parameters, a headband to analyse the mental health and a user-friendly website and mobile application which has an in-built chatbot. AI-based chatbot will talk to the patients and help them reveal their thoughts, which they are otherwise not able to communicate to their peers. A person can chat via text message, which is to be stored in the database for further analysis. The novelty of this work is in the sentiment analysis of voice chat, which therefore creates a comfortable environment for the user." @default.
- W4367011731 created "2023-04-27" @default.
- W4367011731 creator A5005777755 @default.
- W4367011731 creator A5013897423 @default.
- W4367011731 creator A5027525633 @default.
- W4367011731 creator A5042004521 @default.
- W4367011731 creator A5061633004 @default.
- W4367011731 creator A5089782453 @default.
- W4367011731 date "2023-01-01" @default.
- W4367011731 modified "2023-09-25" @default.
- W4367011731 title "Improving Mental Health Through Multimodal Emotion Detection from Speech and Text Data Using Long-Short Term Memory" @default.
- W4367011731 cites W1133916940 @default.
- W4367011731 cites W1480583224 @default.
- W4367011731 cites W2080576537 @default.
- W4367011731 cites W2625968990 @default.
- W4367011731 cites W2769722486 @default.
- W4367011731 cites W2803193013 @default.
- W4367011731 cites W2963177779 @default.
- W4367011731 cites W3089526972 @default.
- W4367011731 cites W3134456151 @default.
- W4367011731 cites W3151064326 @default.
- W4367011731 cites W3159597990 @default.
- W4367011731 cites W3176221632 @default.
- W4367011731 cites W3199297386 @default.
- W4367011731 doi "https://doi.org/10.1007/978-981-19-5191-6_2" @default.
- W4367011731 hasPublicationYear "2023" @default.
- W4367011731 type Work @default.
- W4367011731 citedByCount "0" @default.
- W4367011731 crossrefType "book-chapter" @default.
- W4367011731 hasAuthorship W4367011731A5005777755 @default.
- W4367011731 hasAuthorship W4367011731A5013897423 @default.
- W4367011731 hasAuthorship W4367011731A5027525633 @default.
- W4367011731 hasAuthorship W4367011731A5042004521 @default.
- W4367011731 hasAuthorship W4367011731A5061633004 @default.
- W4367011731 hasAuthorship W4367011731A5089782453 @default.
- W4367011731 hasConcept C108583219 @default.
- W4367011731 hasConcept C118552586 @default.
- W4367011731 hasConcept C134362201 @default.
- W4367011731 hasConcept C139719470 @default.
- W4367011731 hasConcept C153180980 @default.
- W4367011731 hasConcept C154945302 @default.
- W4367011731 hasConcept C15744967 @default.
- W4367011731 hasConcept C162324750 @default.
- W4367011731 hasConcept C2776867660 @default.
- W4367011731 hasConcept C2779998236 @default.
- W4367011731 hasConcept C41008148 @default.
- W4367011731 hasConcept C77088390 @default.
- W4367011731 hasConceptScore W4367011731C108583219 @default.
- W4367011731 hasConceptScore W4367011731C118552586 @default.
- W4367011731 hasConceptScore W4367011731C134362201 @default.
- W4367011731 hasConceptScore W4367011731C139719470 @default.
- W4367011731 hasConceptScore W4367011731C153180980 @default.
- W4367011731 hasConceptScore W4367011731C154945302 @default.
- W4367011731 hasConceptScore W4367011731C15744967 @default.
- W4367011731 hasConceptScore W4367011731C162324750 @default.
- W4367011731 hasConceptScore W4367011731C2776867660 @default.
- W4367011731 hasConceptScore W4367011731C2779998236 @default.
- W4367011731 hasConceptScore W4367011731C41008148 @default.
- W4367011731 hasConceptScore W4367011731C77088390 @default.
- W4367011731 hasLocation W43670117311 @default.
- W4367011731 hasOpenAccess W4367011731 @default.
- W4367011731 hasPrimaryLocation W43670117311 @default.
- W4367011731 hasRelatedWork W2037132932 @default.
- W4367011731 hasRelatedWork W2077221684 @default.
- W4367011731 hasRelatedWork W2133697414 @default.
- W4367011731 hasRelatedWork W2568744025 @default.
- W4367011731 hasRelatedWork W2724788368 @default.
- W4367011731 hasRelatedWork W2748952813 @default.
- W4367011731 hasRelatedWork W2777007568 @default.
- W4367011731 hasRelatedWork W2899084033 @default.
- W4367011731 hasRelatedWork W2914085691 @default.
- W4367011731 hasRelatedWork W4293764539 @default.
- W4367011731 isParatext "false" @default.
- W4367011731 isRetracted "false" @default.
- W4367011731 workType "book-chapter" @default.