Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011801> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367011801 endingPage "588" @default.
- W4367011801 startingPage "579" @default.
- W4367011801 abstract "In recent years, heart disease increases the humanity rate transversely the world. So, it is required to extend a model to envisage the heart disease incident as early as feasible with an elevated rate of accuracy. In this study, cardiovascular disease is predicted by a novel method with the retinal image data. In this system, the retinal fundus image data are used to indicate heart disease occurrence. The cardiovascular disease gets detected from the changes in the microvasculature, which is imaged from the retina. The prediction of disease is by considering features like age, gender, smoking status, systolic blood pressure, diastolic blood pressure, and HbA1c that can be extracted using Improved GLCM approach. Then the pointed features can be selected using the ICA algorithm. Risk factors for heart disease occurrence are detected from the microvasculature of ERNN-classified retinal fundus image using MATLAB. The input image is taken from the UCI machine learning repository based on Cleveland datasets. The main objective of the proposed system is to predict the occurrence of heart disease from retinal fundus image with a higher rate of accuracy." @default.
- W4367011801 created "2023-04-27" @default.
- W4367011801 creator A5015996283 @default.
- W4367011801 creator A5079878907 @default.
- W4367011801 date "2023-01-01" @default.
- W4367011801 modified "2023-09-27" @default.
- W4367011801 title "Cardiovascular Disease Prediction in Retinal Fundus Images Using ERNN Technique" @default.
- W4367011801 cites W2900794383 @default.
- W4367011801 cites W2923644550 @default.
- W4367011801 cites W2945204773 @default.
- W4367011801 cites W2964036745 @default.
- W4367011801 cites W2966312603 @default.
- W4367011801 cites W2969503496 @default.
- W4367011801 cites W2971515944 @default.
- W4367011801 cites W2978707514 @default.
- W4367011801 cites W2985345218 @default.
- W4367011801 cites W3007636570 @default.
- W4367011801 cites W3013493145 @default.
- W4367011801 cites W3017378335 @default.
- W4367011801 cites W3033811668 @default.
- W4367011801 cites W3034428722 @default.
- W4367011801 cites W3035159033 @default.
- W4367011801 cites W3035502800 @default.
- W4367011801 cites W3036128409 @default.
- W4367011801 cites W3041641117 @default.
- W4367011801 cites W3044659283 @default.
- W4367011801 cites W3044895946 @default.
- W4367011801 cites W3085959080 @default.
- W4367011801 doi "https://doi.org/10.1007/978-981-19-5191-6_46" @default.
- W4367011801 hasPublicationYear "2023" @default.
- W4367011801 type Work @default.
- W4367011801 citedByCount "0" @default.
- W4367011801 crossrefType "book-chapter" @default.
- W4367011801 hasAuthorship W4367011801A5015996283 @default.
- W4367011801 hasAuthorship W4367011801A5079878907 @default.
- W4367011801 hasConcept C118487528 @default.
- W4367011801 hasConcept C126322002 @default.
- W4367011801 hasConcept C154945302 @default.
- W4367011801 hasConcept C164705383 @default.
- W4367011801 hasConcept C169760540 @default.
- W4367011801 hasConcept C2776391266 @default.
- W4367011801 hasConcept C2777093970 @default.
- W4367011801 hasConcept C2777953023 @default.
- W4367011801 hasConcept C2779134260 @default.
- W4367011801 hasConcept C2780827179 @default.
- W4367011801 hasConcept C41008148 @default.
- W4367011801 hasConcept C57900726 @default.
- W4367011801 hasConcept C71924100 @default.
- W4367011801 hasConcept C84393581 @default.
- W4367011801 hasConcept C86803240 @default.
- W4367011801 hasConceptScore W4367011801C118487528 @default.
- W4367011801 hasConceptScore W4367011801C126322002 @default.
- W4367011801 hasConceptScore W4367011801C154945302 @default.
- W4367011801 hasConceptScore W4367011801C164705383 @default.
- W4367011801 hasConceptScore W4367011801C169760540 @default.
- W4367011801 hasConceptScore W4367011801C2776391266 @default.
- W4367011801 hasConceptScore W4367011801C2777093970 @default.
- W4367011801 hasConceptScore W4367011801C2777953023 @default.
- W4367011801 hasConceptScore W4367011801C2779134260 @default.
- W4367011801 hasConceptScore W4367011801C2780827179 @default.
- W4367011801 hasConceptScore W4367011801C41008148 @default.
- W4367011801 hasConceptScore W4367011801C57900726 @default.
- W4367011801 hasConceptScore W4367011801C71924100 @default.
- W4367011801 hasConceptScore W4367011801C84393581 @default.
- W4367011801 hasConceptScore W4367011801C86803240 @default.
- W4367011801 hasLocation W43670118011 @default.
- W4367011801 hasOpenAccess W4367011801 @default.
- W4367011801 hasPrimaryLocation W43670118011 @default.
- W4367011801 hasRelatedWork W2017838157 @default.
- W4367011801 hasRelatedWork W2057774157 @default.
- W4367011801 hasRelatedWork W2077022902 @default.
- W4367011801 hasRelatedWork W2393476063 @default.
- W4367011801 hasRelatedWork W2425049616 @default.
- W4367011801 hasRelatedWork W2909288131 @default.
- W4367011801 hasRelatedWork W3014513769 @default.
- W4367011801 hasRelatedWork W3016883261 @default.
- W4367011801 hasRelatedWork W3029563123 @default.
- W4367011801 hasRelatedWork W3183254243 @default.
- W4367011801 isParatext "false" @default.
- W4367011801 isRetracted "false" @default.
- W4367011801 workType "book-chapter" @default.