Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011807> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4367011807 endingPage "451" @default.
- W4367011807 startingPage "443" @default.
- W4367011807 abstract "The COVID-19 which is caused by the severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2, has taken a lot of human life and still continuing, and significantly disrupting the healthcare system. Due to challenges and controversies to testing for COVID-19, improved, alternative cost-effective, and machine learning methods are needed to detect the disease and related data analysis. For this purpose, machine learning (ML) approaches emerge as a strong forecasting method to detect a disease including COVID-19. Our proposed ensemble machine learning (EML) is a technique that leverages multiple deep learning models and then combines them to produce improved results. In this paper, we proposed an EML approach to detect COVID-19 using chest x-ray images. Radiographic images are readily available, which can be used as an effective tool compared to other expensive and time-consuming pathological tests, but not to replace pathological tests but rather give alternative extra confirmation and more detailed analysis to the medical fraternity. In conclusion, automatic computational machine learning models allow for rapid analysis of chest X-ray images and thus enable radiologists to filter potential candidates in a time-effective manner to detect COVID-19. Our proposed approach has very promising results with an average detection accuracy of 93.56% and a sensitivity of 91.24%, and an F1 score is 0.91." @default.
- W4367011807 created "2023-04-27" @default.
- W4367011807 creator A5043017208 @default.
- W4367011807 creator A5056611742 @default.
- W4367011807 date "2023-01-01" @default.
- W4367011807 modified "2023-09-25" @default.
- W4367011807 title "An Ensemble Machine Learning Model to Detect COVID-19 Using Chest X-Ray" @default.
- W4367011807 cites W1901129140 @default.
- W4367011807 cites W2024798729 @default.
- W4367011807 cites W2104636679 @default.
- W4367011807 cites W2142514727 @default.
- W4367011807 cites W2194775991 @default.
- W4367011807 cites W2618530766 @default.
- W4367011807 cites W2919115771 @default.
- W4367011807 cites W2963446712 @default.
- W4367011807 cites W3001118548 @default.
- W4367011807 cites W3003217347 @default.
- W4367011807 cites W3012127105 @default.
- W4367011807 cites W3033616466 @default.
- W4367011807 cites W3039137888 @default.
- W4367011807 cites W3039545596 @default.
- W4367011807 cites W3039563973 @default.
- W4367011807 cites W3045460727 @default.
- W4367011807 cites W3105081694 @default.
- W4367011807 cites W3117598746 @default.
- W4367011807 cites W3195329322 @default.
- W4367011807 cites W3215911765 @default.
- W4367011807 doi "https://doi.org/10.1007/978-981-19-5191-6_36" @default.
- W4367011807 hasPublicationYear "2023" @default.
- W4367011807 type Work @default.
- W4367011807 citedByCount "0" @default.
- W4367011807 crossrefType "book-chapter" @default.
- W4367011807 hasAuthorship W4367011807A5043017208 @default.
- W4367011807 hasAuthorship W4367011807A5056611742 @default.
- W4367011807 hasConcept C106131492 @default.
- W4367011807 hasConcept C108583219 @default.
- W4367011807 hasConcept C119857082 @default.
- W4367011807 hasConcept C126838900 @default.
- W4367011807 hasConcept C142724271 @default.
- W4367011807 hasConcept C154945302 @default.
- W4367011807 hasConcept C2779134260 @default.
- W4367011807 hasConcept C3008058167 @default.
- W4367011807 hasConcept C31972630 @default.
- W4367011807 hasConcept C36454342 @default.
- W4367011807 hasConcept C41008148 @default.
- W4367011807 hasConcept C45942800 @default.
- W4367011807 hasConcept C524204448 @default.
- W4367011807 hasConcept C71924100 @default.
- W4367011807 hasConceptScore W4367011807C106131492 @default.
- W4367011807 hasConceptScore W4367011807C108583219 @default.
- W4367011807 hasConceptScore W4367011807C119857082 @default.
- W4367011807 hasConceptScore W4367011807C126838900 @default.
- W4367011807 hasConceptScore W4367011807C142724271 @default.
- W4367011807 hasConceptScore W4367011807C154945302 @default.
- W4367011807 hasConceptScore W4367011807C2779134260 @default.
- W4367011807 hasConceptScore W4367011807C3008058167 @default.
- W4367011807 hasConceptScore W4367011807C31972630 @default.
- W4367011807 hasConceptScore W4367011807C36454342 @default.
- W4367011807 hasConceptScore W4367011807C41008148 @default.
- W4367011807 hasConceptScore W4367011807C45942800 @default.
- W4367011807 hasConceptScore W4367011807C524204448 @default.
- W4367011807 hasConceptScore W4367011807C71924100 @default.
- W4367011807 hasLocation W43670118071 @default.
- W4367011807 hasOpenAccess W4367011807 @default.
- W4367011807 hasPrimaryLocation W43670118071 @default.
- W4367011807 hasRelatedWork W2791691546 @default.
- W4367011807 hasRelatedWork W2810053714 @default.
- W4367011807 hasRelatedWork W2950066684 @default.
- W4367011807 hasRelatedWork W3136979370 @default.
- W4367011807 hasRelatedWork W3158264953 @default.
- W4367011807 hasRelatedWork W3200098538 @default.
- W4367011807 hasRelatedWork W4220785415 @default.
- W4367011807 hasRelatedWork W4298388782 @default.
- W4367011807 hasRelatedWork W4308112567 @default.
- W4367011807 hasRelatedWork W4310989423 @default.
- W4367011807 isParatext "false" @default.
- W4367011807 isRetracted "false" @default.
- W4367011807 workType "book-chapter" @default.