Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016574> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4367016574 endingPage "12" @default.
- W4367016574 startingPage "1" @default.
- W4367016574 abstract "An attack on Industrial IoT systems can cause severe damage to connected devices and their owners. Therefore, detecting router firmware vulnerabilities has become a critical issue. However, collecting a dataset of firmware samples is challenging as no open-source datasets are available online. A manual effort was required to verify the states of samples in both the Common Vulnerabilities and Exposures (CVE) and The National Vulnerability Database (NVD) databases as either vulnerable or benign. After verification, 1450 samples were collected. This paper investigates the effectiveness of using convolutional neural networks (CNNs) and computer vision techniques to analyze home router firmware. The collected firmware samples were read as an array of byte strings, divided into sub-arrays based on the image's dimensions, then layered on top of one another to produce the firmware images. The images were divided by manufacturer and used as inputs for various CNN models to test their accuracy. Three statistical filtering algorithms were used on each manufacturer's set to produce multiple versions of each set, totaling 24 datasets across four manufacturers, with six datasets per manufacturer (4 filtered images and two grayscale and RGB images). The image filter algorithms used include local binary pattern (LBP), histogram-oriented gradients (HOG), and Gabor filter used on the LBP and HOG sets. After testing all combinations of the filtered/normal datasets with the CNN training model, the HOG filter was the most accurate, with an average accuracy of 85.81% across all tests and models, with results as high as 97.94% when used with the appropriate CNN model." @default.
- W4367016574 created "2023-04-27" @default.
- W4367016574 creator A5000085565 @default.
- W4367016574 creator A5001746807 @default.
- W4367016574 creator A5004683453 @default.
- W4367016574 creator A5026939392 @default.
- W4367016574 creator A5078215257 @default.
- W4367016574 date "2023-01-01" @default.
- W4367016574 modified "2023-10-16" @default.
- W4367016574 title "A Deep Learning Approach to Discover Router Firmware Vulnerabilities" @default.
- W4367016574 doi "https://doi.org/10.1109/tii.2023.3269774" @default.
- W4367016574 hasPublicationYear "2023" @default.
- W4367016574 type Work @default.
- W4367016574 citedByCount "0" @default.
- W4367016574 crossrefType "journal-article" @default.
- W4367016574 hasAuthorship W4367016574A5000085565 @default.
- W4367016574 hasAuthorship W4367016574A5001746807 @default.
- W4367016574 hasAuthorship W4367016574A5004683453 @default.
- W4367016574 hasAuthorship W4367016574A5026939392 @default.
- W4367016574 hasAuthorship W4367016574A5078215257 @default.
- W4367016574 hasConcept C106131492 @default.
- W4367016574 hasConcept C115961682 @default.
- W4367016574 hasConcept C119857082 @default.
- W4367016574 hasConcept C124101348 @default.
- W4367016574 hasConcept C153180895 @default.
- W4367016574 hasConcept C154945302 @default.
- W4367016574 hasConcept C169903167 @default.
- W4367016574 hasConcept C17426736 @default.
- W4367016574 hasConcept C177264268 @default.
- W4367016574 hasConcept C199360897 @default.
- W4367016574 hasConcept C2775896111 @default.
- W4367016574 hasConcept C31258907 @default.
- W4367016574 hasConcept C31972630 @default.
- W4367016574 hasConcept C41008148 @default.
- W4367016574 hasConcept C53533937 @default.
- W4367016574 hasConcept C67212190 @default.
- W4367016574 hasConcept C81363708 @default.
- W4367016574 hasConcept C82990744 @default.
- W4367016574 hasConcept C9390403 @default.
- W4367016574 hasConceptScore W4367016574C106131492 @default.
- W4367016574 hasConceptScore W4367016574C115961682 @default.
- W4367016574 hasConceptScore W4367016574C119857082 @default.
- W4367016574 hasConceptScore W4367016574C124101348 @default.
- W4367016574 hasConceptScore W4367016574C153180895 @default.
- W4367016574 hasConceptScore W4367016574C154945302 @default.
- W4367016574 hasConceptScore W4367016574C169903167 @default.
- W4367016574 hasConceptScore W4367016574C17426736 @default.
- W4367016574 hasConceptScore W4367016574C177264268 @default.
- W4367016574 hasConceptScore W4367016574C199360897 @default.
- W4367016574 hasConceptScore W4367016574C2775896111 @default.
- W4367016574 hasConceptScore W4367016574C31258907 @default.
- W4367016574 hasConceptScore W4367016574C31972630 @default.
- W4367016574 hasConceptScore W4367016574C41008148 @default.
- W4367016574 hasConceptScore W4367016574C53533937 @default.
- W4367016574 hasConceptScore W4367016574C67212190 @default.
- W4367016574 hasConceptScore W4367016574C81363708 @default.
- W4367016574 hasConceptScore W4367016574C82990744 @default.
- W4367016574 hasConceptScore W4367016574C9390403 @default.
- W4367016574 hasLocation W43670165741 @default.
- W4367016574 hasOpenAccess W4367016574 @default.
- W4367016574 hasPrimaryLocation W43670165741 @default.
- W4367016574 hasRelatedWork W2066259560 @default.
- W4367016574 hasRelatedWork W2081022503 @default.
- W4367016574 hasRelatedWork W2098144668 @default.
- W4367016574 hasRelatedWork W2344839403 @default.
- W4367016574 hasRelatedWork W2609981634 @default.
- W4367016574 hasRelatedWork W2726121760 @default.
- W4367016574 hasRelatedWork W4224879220 @default.
- W4367016574 hasRelatedWork W4235736048 @default.
- W4367016574 hasRelatedWork W86200934 @default.
- W4367016574 hasRelatedWork W2181817726 @default.
- W4367016574 isParatext "false" @default.
- W4367016574 isRetracted "false" @default.
- W4367016574 workType "article" @default.