Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016613> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367016613 endingPage "224" @default.
- W4367016613 startingPage "215" @default.
- W4367016613 abstract "Highlights With the aim to reduce the burden of acquiring expert knowledge and strengthen the connection between written knowledge and the fields, this article investigated the problem of automatically extracting and organizing soybean pests and disease knowledge from text. Entities and relations were extracted using multiple models with deep neural network structures. Performance of these models were compared and evaluated in detail. A knowledge graph was automatically constructed using the extracted information, and made publicly available. ABSTRACT. Precision agriculture is an emerging type of agriculture that intensively uses information technology to automate agricultural production. Soybean (Glycine max (L.) Merri.), is an important crop in China, with an annual demand of approximately 110 million tons. However, in China, soybean production is threatened by more than 30 kinds of disease and 100 kinds of pests. With the rapidly increasing specialized information in the literature, it is difficult for farmers to keep up. Relation extraction automatically identifies and extracts structured knowledge from natural language text and thus can help to alleviate the problem. In this study, we propose to employ relation extraction to systematically extract information from expert-written text, and generate a knowledge graph from the extracted information. This case study was planned in China, therefore we mainly used Chinese texts. Firstly, we carefully chose expert-written text on soybean pests and disease, labeled the entities, and classified their thematic relations into five categories. Then, we built and trained three relation extraction models using state-of-the-art deep learning architectures and evaluated their performance on our task. Finally, we constructed an example knowledge graph from the extracted information and demonstrated their potential usage for automatic reasoning and solution recommendation for pests and disease prevention. In total, this study sampled 1038 entities and 1569 relation instances. Experimental results showed that our best model achieved an F1 score of 98.49% on identifying relations from text. Experimental results also showed the effectiveness of the example knowledge graph. Keywords: Bidirectional encoder representation from transformers, Knowledge graph, Relation extraction, Soybean pests and disease." @default.
- W4367016613 created "2023-04-27" @default.
- W4367016613 creator A5004829445 @default.
- W4367016613 creator A5010182962 @default.
- W4367016613 creator A5042241049 @default.
- W4367016613 creator A5050933319 @default.
- W4367016613 creator A5074734978 @default.
- W4367016613 creator A5076107706 @default.
- W4367016613 creator A5087158617 @default.
- W4367016613 date "2023-01-01" @default.
- W4367016613 modified "2023-09-24" @default.
- W4367016613 title "Relation Extraction for Knowledge Graph Generation in the Agriculture Domain: A Case Study on Soybean Pests and Disease" @default.
- W4367016613 doi "https://doi.org/10.13031/aea.15124" @default.
- W4367016613 hasPublicationYear "2023" @default.
- W4367016613 type Work @default.
- W4367016613 citedByCount "0" @default.
- W4367016613 crossrefType "journal-article" @default.
- W4367016613 hasAuthorship W4367016613A5004829445 @default.
- W4367016613 hasAuthorship W4367016613A5010182962 @default.
- W4367016613 hasAuthorship W4367016613A5042241049 @default.
- W4367016613 hasAuthorship W4367016613A5050933319 @default.
- W4367016613 hasAuthorship W4367016613A5074734978 @default.
- W4367016613 hasAuthorship W4367016613A5076107706 @default.
- W4367016613 hasAuthorship W4367016613A5087158617 @default.
- W4367016613 hasBestOaLocation W43670166131 @default.
- W4367016613 hasConcept C118518473 @default.
- W4367016613 hasConcept C120567893 @default.
- W4367016613 hasConcept C124101348 @default.
- W4367016613 hasConcept C132525143 @default.
- W4367016613 hasConcept C153604712 @default.
- W4367016613 hasConcept C154945302 @default.
- W4367016613 hasConcept C166957645 @default.
- W4367016613 hasConcept C195807954 @default.
- W4367016613 hasConcept C204321447 @default.
- W4367016613 hasConcept C205649164 @default.
- W4367016613 hasConcept C207685749 @default.
- W4367016613 hasConcept C2522767166 @default.
- W4367016613 hasConcept C25343380 @default.
- W4367016613 hasConcept C2987255567 @default.
- W4367016613 hasConcept C41008148 @default.
- W4367016613 hasConcept C4554734 @default.
- W4367016613 hasConcept C58640448 @default.
- W4367016613 hasConcept C80444323 @default.
- W4367016613 hasConcept C93692415 @default.
- W4367016613 hasConceptScore W4367016613C118518473 @default.
- W4367016613 hasConceptScore W4367016613C120567893 @default.
- W4367016613 hasConceptScore W4367016613C124101348 @default.
- W4367016613 hasConceptScore W4367016613C132525143 @default.
- W4367016613 hasConceptScore W4367016613C153604712 @default.
- W4367016613 hasConceptScore W4367016613C154945302 @default.
- W4367016613 hasConceptScore W4367016613C166957645 @default.
- W4367016613 hasConceptScore W4367016613C195807954 @default.
- W4367016613 hasConceptScore W4367016613C204321447 @default.
- W4367016613 hasConceptScore W4367016613C205649164 @default.
- W4367016613 hasConceptScore W4367016613C207685749 @default.
- W4367016613 hasConceptScore W4367016613C2522767166 @default.
- W4367016613 hasConceptScore W4367016613C25343380 @default.
- W4367016613 hasConceptScore W4367016613C2987255567 @default.
- W4367016613 hasConceptScore W4367016613C41008148 @default.
- W4367016613 hasConceptScore W4367016613C4554734 @default.
- W4367016613 hasConceptScore W4367016613C58640448 @default.
- W4367016613 hasConceptScore W4367016613C80444323 @default.
- W4367016613 hasConceptScore W4367016613C93692415 @default.
- W4367016613 hasIssue "2" @default.
- W4367016613 hasLocation W43670166131 @default.
- W4367016613 hasOpenAccess W4367016613 @default.
- W4367016613 hasPrimaryLocation W43670166131 @default.
- W4367016613 hasRelatedWork W164415767 @default.
- W4367016613 hasRelatedWork W2380916386 @default.
- W4367016613 hasRelatedWork W2806860662 @default.
- W4367016613 hasRelatedWork W2982652096 @default.
- W4367016613 hasRelatedWork W3157861425 @default.
- W4367016613 hasRelatedWork W3176328530 @default.
- W4367016613 hasRelatedWork W4283327337 @default.
- W4367016613 hasRelatedWork W4287888344 @default.
- W4367016613 hasRelatedWork W4319071221 @default.
- W4367016613 hasRelatedWork W167186872 @default.
- W4367016613 hasVolume "39" @default.
- W4367016613 isParatext "false" @default.
- W4367016613 isRetracted "false" @default.
- W4367016613 workType "article" @default.