Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016651> ?p ?o ?g. }
- W4367016651 endingPage "18" @default.
- W4367016651 startingPage "1" @default.
- W4367016651 abstract "The Automatic Identification System (AIS) has recorded near-real-time vessel monitoring data over the years, paving the way for data-driven maritime surveillance methods; concurrently, the data suffer from unrefined, reliability issues and irregular intervals. In this paper, we address the problem of vessel destination estimation by exploiting the global-scope AIS data. We propose a differentiated data-driven approach recasting a long sequence of port-to-port international vessel trajectories as a nested sequence structure. Based on spatial grids, this approach mitigates the spatio-temporal bias of AIS data while preserving the detailed resolution of the original. Further, we propose a novel deep learning architecture (WAY) that is designed to effectively process the reformulated trajectory and perform the long-term estimation of the vessel destination ahead of arrival with a horizon of days to weeks. WAY comprises a trajectory representation layer and channel-aggregative sequential processing (CASP) blocks. The representation layer produces the multi-channel vector sequence output based on each kinematic and non-kinematic feature collected from AIS data. Then CASP blocks include multi-headed channel- and self-attention architectures, where each processes aggregation and sequential information delivery respectively. Then, a task-specialized learning technique, Gradient Dropout (GD), is also suggested for adopting many-to-many training along the trajectory progression on single labels. The technique prevents a surge of biased feedback by blocking the gradient flow stochastically using the condition depending on the length of training samples. Experimental results on 5-year accumulated AIS data demonstrated the superiority of WAY with recasting AIS trajectory compared to conventional spatial grid-based approaches, regardless of the trajectory progression steps. Moreover, the data proved that adopting GD in a spatial grid-based approach leads to the performance gain. In addition, the possibilities of improvement and real-world application with WAY's expandability in multitask learning for the estimation of ETA was explored." @default.
- W4367016651 created "2023-04-27" @default.
- W4367016651 creator A5012460049 @default.
- W4367016651 creator A5024995454 @default.
- W4367016651 creator A5039479469 @default.
- W4367016651 creator A5046587646 @default.
- W4367016651 creator A5078302938 @default.
- W4367016651 date "2023-01-01" @default.
- W4367016651 modified "2023-10-12" @default.
- W4367016651 title "WAY: Estimation of Vessel Destination in Worldwide AIS Trajectory" @default.
- W4367016651 cites W1498436455 @default.
- W4367016651 cites W1902237438 @default.
- W4367016651 cites W2022603014 @default.
- W4367016651 cites W2064675550 @default.
- W4367016651 cites W2066792529 @default.
- W4367016651 cites W2075236191 @default.
- W4367016651 cites W2083442964 @default.
- W4367016651 cites W2089032497 @default.
- W4367016651 cites W2140242774 @default.
- W4367016651 cites W2150355110 @default.
- W4367016651 cites W2157331557 @default.
- W4367016651 cites W2194775991 @default.
- W4367016651 cites W2219299986 @default.
- W4367016651 cites W2294798173 @default.
- W4367016651 cites W2470623787 @default.
- W4367016651 cites W2503387258 @default.
- W4367016651 cites W2572270144 @default.
- W4367016651 cites W2752782242 @default.
- W4367016651 cites W2753820606 @default.
- W4367016651 cites W2802630450 @default.
- W4367016651 cites W2809127489 @default.
- W4367016651 cites W2886960696 @default.
- W4367016651 cites W2902297500 @default.
- W4367016651 cites W2944924828 @default.
- W4367016651 cites W2964051877 @default.
- W4367016651 cites W2975643619 @default.
- W4367016651 cites W3011190199 @default.
- W4367016651 cites W3011915942 @default.
- W4367016651 cites W3012815794 @default.
- W4367016651 cites W3015961574 @default.
- W4367016651 cites W3035251599 @default.
- W4367016651 cites W3042011474 @default.
- W4367016651 cites W3085973453 @default.
- W4367016651 cites W3197255421 @default.
- W4367016651 cites W3202222478 @default.
- W4367016651 cites W3207160263 @default.
- W4367016651 cites W4200300727 @default.
- W4367016651 doi "https://doi.org/10.1109/taes.2023.3269729" @default.
- W4367016651 hasPublicationYear "2023" @default.
- W4367016651 type Work @default.
- W4367016651 citedByCount "0" @default.
- W4367016651 crossrefType "journal-article" @default.
- W4367016651 hasAuthorship W4367016651A5012460049 @default.
- W4367016651 hasAuthorship W4367016651A5024995454 @default.
- W4367016651 hasAuthorship W4367016651A5039479469 @default.
- W4367016651 hasAuthorship W4367016651A5046587646 @default.
- W4367016651 hasAuthorship W4367016651A5078302938 @default.
- W4367016651 hasConcept C111919701 @default.
- W4367016651 hasConcept C11413529 @default.
- W4367016651 hasConcept C121332964 @default.
- W4367016651 hasConcept C124101348 @default.
- W4367016651 hasConcept C127162648 @default.
- W4367016651 hasConcept C1276947 @default.
- W4367016651 hasConcept C13662910 @default.
- W4367016651 hasConcept C138885662 @default.
- W4367016651 hasConcept C146997752 @default.
- W4367016651 hasConcept C154945302 @default.
- W4367016651 hasConcept C17744445 @default.
- W4367016651 hasConcept C199539241 @default.
- W4367016651 hasConcept C2776359362 @default.
- W4367016651 hasConcept C2776401178 @default.
- W4367016651 hasConcept C2778112365 @default.
- W4367016651 hasConcept C41008148 @default.
- W4367016651 hasConcept C41895202 @default.
- W4367016651 hasConcept C54355233 @default.
- W4367016651 hasConcept C76155785 @default.
- W4367016651 hasConcept C79403827 @default.
- W4367016651 hasConcept C86803240 @default.
- W4367016651 hasConcept C94625758 @default.
- W4367016651 hasConcept C98045186 @default.
- W4367016651 hasConceptScore W4367016651C111919701 @default.
- W4367016651 hasConceptScore W4367016651C11413529 @default.
- W4367016651 hasConceptScore W4367016651C121332964 @default.
- W4367016651 hasConceptScore W4367016651C124101348 @default.
- W4367016651 hasConceptScore W4367016651C127162648 @default.
- W4367016651 hasConceptScore W4367016651C1276947 @default.
- W4367016651 hasConceptScore W4367016651C13662910 @default.
- W4367016651 hasConceptScore W4367016651C138885662 @default.
- W4367016651 hasConceptScore W4367016651C146997752 @default.
- W4367016651 hasConceptScore W4367016651C154945302 @default.
- W4367016651 hasConceptScore W4367016651C17744445 @default.
- W4367016651 hasConceptScore W4367016651C199539241 @default.
- W4367016651 hasConceptScore W4367016651C2776359362 @default.
- W4367016651 hasConceptScore W4367016651C2776401178 @default.
- W4367016651 hasConceptScore W4367016651C2778112365 @default.
- W4367016651 hasConceptScore W4367016651C41008148 @default.
- W4367016651 hasConceptScore W4367016651C41895202 @default.
- W4367016651 hasConceptScore W4367016651C54355233 @default.