Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016652> ?p ?o ?g. }
- W4367016652 endingPage "12030" @default.
- W4367016652 startingPage "12018" @default.
- W4367016652 abstract "The prediction of performance degradation for the aero-engine is crucial to its health management, but the handling of the dynamic spatiotemporal dependence between condition monitoring (CM) data of multiple sensors and the status of performance degradation is nontrivial. Most previous prediction models of performance degradation treat different health stages equally in the training process, although the data in the initial degradation stage are relatively sparse and more important for training a decent prediction model. To bridge this gap, we propose a data-augmentation-boosted dual Informer framework (named DARWIN) for predicting the performance degradation of aero-engines. First, we present a degradation time-series data augmentation model based on Informer to increase the amount of degradation data, making it possible to emphasize the importance of data in the initial degradation stage in the following prediction stage. Second, we design a padding strategy for the run-to-failure (RtF) data so as to preserve the integrity of the degradation context comprehensively. Third, we invoke another Informer model for predicting the performance degradation in which a generative decoder is implemented to get predictions in one forward process instead of the recursive manner for fast computation speed and avoid error accumulation. On the benchmark C-MAPSS datasets, DARWIN yields a 27% accuracy improvement compared with the state-of-the-art method, Informer, in the performance degradation prediction of aero-engines. Furthermore, we demonstrate the feasibility of DARWIN on a fleet of eight turbofan engines under real flight conditions, thereby confirming its applicability." @default.
- W4367016652 created "2023-04-27" @default.
- W4367016652 creator A5001394239 @default.
- W4367016652 creator A5006425522 @default.
- W4367016652 creator A5007304896 @default.
- W4367016652 creator A5035321872 @default.
- W4367016652 creator A5036120211 @default.
- W4367016652 creator A5061906681 @default.
- W4367016652 creator A5069906649 @default.
- W4367016652 creator A5090815103 @default.
- W4367016652 date "2023-06-01" @default.
- W4367016652 modified "2023-10-16" @default.
- W4367016652 title "A Data Augmentation Boosted Dual Informer Framework for the Performance Degradation Prediction of Aero-Engines" @default.
- W4367016652 cites W2015681982 @default.
- W4367016652 cites W2090668019 @default.
- W4367016652 cites W2772084711 @default.
- W4367016652 cites W2773549135 @default.
- W4367016652 cites W2902985761 @default.
- W4367016652 cites W2944676531 @default.
- W4367016652 cites W2949449669 @default.
- W4367016652 cites W3001566134 @default.
- W4367016652 cites W3005331186 @default.
- W4367016652 cites W3014146531 @default.
- W4367016652 cites W3048988402 @default.
- W4367016652 cites W3092302056 @default.
- W4367016652 cites W3119743098 @default.
- W4367016652 cites W3124057057 @default.
- W4367016652 cites W3132280229 @default.
- W4367016652 cites W3134161237 @default.
- W4367016652 cites W3137613462 @default.
- W4367016652 cites W3170305376 @default.
- W4367016652 cites W3173407600 @default.
- W4367016652 cites W3173924324 @default.
- W4367016652 cites W3177318507 @default.
- W4367016652 cites W3190840618 @default.
- W4367016652 cites W3200131984 @default.
- W4367016652 cites W3201503618 @default.
- W4367016652 cites W3207642814 @default.
- W4367016652 cites W4205830141 @default.
- W4367016652 cites W4220678967 @default.
- W4367016652 cites W4280605288 @default.
- W4367016652 cites W4283026297 @default.
- W4367016652 cites W4295132050 @default.
- W4367016652 cites W4301966054 @default.
- W4367016652 cites W4302774545 @default.
- W4367016652 cites W4307040771 @default.
- W4367016652 cites W4312084189 @default.
- W4367016652 cites W4315569265 @default.
- W4367016652 cites W4317625837 @default.
- W4367016652 cites W4321381914 @default.
- W4367016652 doi "https://doi.org/10.1109/jsen.2023.3269030" @default.
- W4367016652 hasPublicationYear "2023" @default.
- W4367016652 type Work @default.
- W4367016652 citedByCount "0" @default.
- W4367016652 crossrefType "journal-article" @default.
- W4367016652 hasAuthorship W4367016652A5001394239 @default.
- W4367016652 hasAuthorship W4367016652A5006425522 @default.
- W4367016652 hasAuthorship W4367016652A5007304896 @default.
- W4367016652 hasAuthorship W4367016652A5035321872 @default.
- W4367016652 hasAuthorship W4367016652A5036120211 @default.
- W4367016652 hasAuthorship W4367016652A5061906681 @default.
- W4367016652 hasAuthorship W4367016652A5069906649 @default.
- W4367016652 hasAuthorship W4367016652A5090815103 @default.
- W4367016652 hasConcept C110050840 @default.
- W4367016652 hasConcept C111919701 @default.
- W4367016652 hasConcept C119857082 @default.
- W4367016652 hasConcept C121332964 @default.
- W4367016652 hasConcept C127413603 @default.
- W4367016652 hasConcept C13280743 @default.
- W4367016652 hasConcept C151730666 @default.
- W4367016652 hasConcept C154945302 @default.
- W4367016652 hasConcept C163258240 @default.
- W4367016652 hasConcept C171146098 @default.
- W4367016652 hasConcept C185798385 @default.
- W4367016652 hasConcept C200601418 @default.
- W4367016652 hasConcept C205649164 @default.
- W4367016652 hasConcept C2779343474 @default.
- W4367016652 hasConcept C2779679103 @default.
- W4367016652 hasConcept C2780440489 @default.
- W4367016652 hasConcept C41008148 @default.
- W4367016652 hasConcept C43214815 @default.
- W4367016652 hasConcept C62520636 @default.
- W4367016652 hasConcept C67186912 @default.
- W4367016652 hasConcept C76155785 @default.
- W4367016652 hasConcept C77088390 @default.
- W4367016652 hasConcept C86803240 @default.
- W4367016652 hasConcept C98045186 @default.
- W4367016652 hasConceptScore W4367016652C110050840 @default.
- W4367016652 hasConceptScore W4367016652C111919701 @default.
- W4367016652 hasConceptScore W4367016652C119857082 @default.
- W4367016652 hasConceptScore W4367016652C121332964 @default.
- W4367016652 hasConceptScore W4367016652C127413603 @default.
- W4367016652 hasConceptScore W4367016652C13280743 @default.
- W4367016652 hasConceptScore W4367016652C151730666 @default.
- W4367016652 hasConceptScore W4367016652C154945302 @default.
- W4367016652 hasConceptScore W4367016652C163258240 @default.
- W4367016652 hasConceptScore W4367016652C171146098 @default.
- W4367016652 hasConceptScore W4367016652C185798385 @default.