Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016683> ?p ?o ?g. }
- W4367016683 endingPage "16868" @default.
- W4367016683 startingPage "16856" @default.
- W4367016683 abstract "The sparsity of the localization problem makes the Compression Sensing (CS) theory suitable for indoor localization in Wireless Local Area Networks (WLAN). However, in practice, we find that the location errors and computing complexity increase significantly as the dimensionality of the sparse vector and measurement matrix are high in a large environment, so most CS-based localization techniques are accompanied by coarse localization and AP selection stages. Therefore, in this paper, we first deduced the relationship between the number of Access Points (APs) and the dimensionality of the sparse vector theoretically to give the guideline that the number of sub-databases and APs should be obtained. Then an Adaptive Intuitionistic Fuzzy C-ordered Mean (AIFCOM) clustering is designed for the data with outliers in the environment with multipath effects. Finally, in the fine localization stage, we propose a Semi-tensor Product Compression Sensing (STP-CS) model to construct the measurement matrix, compared with the traditional CS model, our model not only remains more number of APs, but also decreases the dimensionality of measurement matrix, which can reduce the storage space and improve localization accuracy simultaneously." @default.
- W4367016683 created "2023-04-27" @default.
- W4367016683 creator A5012777103 @default.
- W4367016683 creator A5024396777 @default.
- W4367016683 creator A5037835022 @default.
- W4367016683 creator A5061293928 @default.
- W4367016683 creator A5080995977 @default.
- W4367016683 creator A5088606308 @default.
- W4367016683 date "2023-10-01" @default.
- W4367016683 modified "2023-09-27" @default.
- W4367016683 title "Large Environment Indoor Localization Leveraging Semi-tensor Product Compression Sensing" @default.
- W4367016683 cites W1995450389 @default.
- W4367016683 cites W2011502582 @default.
- W4367016683 cites W2053677366 @default.
- W4367016683 cites W2096971408 @default.
- W4367016683 cites W2166583230 @default.
- W4367016683 cites W2500308745 @default.
- W4367016683 cites W2536129580 @default.
- W4367016683 cites W2791903243 @default.
- W4367016683 cites W2811183593 @default.
- W4367016683 cites W2905327136 @default.
- W4367016683 cites W2906391267 @default.
- W4367016683 cites W2909935011 @default.
- W4367016683 cites W2959498949 @default.
- W4367016683 cites W2985924450 @default.
- W4367016683 cites W3001038584 @default.
- W4367016683 cites W3005939710 @default.
- W4367016683 cites W3009362045 @default.
- W4367016683 cites W3011453130 @default.
- W4367016683 cites W3018051610 @default.
- W4367016683 cites W3022043258 @default.
- W4367016683 cites W3024058540 @default.
- W4367016683 cites W3035419842 @default.
- W4367016683 cites W3035977961 @default.
- W4367016683 cites W3037051439 @default.
- W4367016683 cites W3043736894 @default.
- W4367016683 cites W3046382673 @default.
- W4367016683 cites W3048573213 @default.
- W4367016683 cites W3118853248 @default.
- W4367016683 cites W3125444135 @default.
- W4367016683 cites W3132058297 @default.
- W4367016683 cites W3139333226 @default.
- W4367016683 cites W3159850628 @default.
- W4367016683 cites W3164883109 @default.
- W4367016683 cites W3179065261 @default.
- W4367016683 cites W3203293349 @default.
- W4367016683 cites W3214186435 @default.
- W4367016683 cites W3217119680 @default.
- W4367016683 cites W4214849013 @default.
- W4367016683 cites W4226489268 @default.
- W4367016683 cites W4229449615 @default.
- W4367016683 cites W4285287987 @default.
- W4367016683 cites W4288388572 @default.
- W4367016683 cites W4293869091 @default.
- W4367016683 cites W4294811324 @default.
- W4367016683 cites W4311397985 @default.
- W4367016683 cites W4360907549 @default.
- W4367016683 doi "https://doi.org/10.1109/jiot.2023.3269889" @default.
- W4367016683 hasPublicationYear "2023" @default.
- W4367016683 type Work @default.
- W4367016683 citedByCount "0" @default.
- W4367016683 crossrefType "journal-article" @default.
- W4367016683 hasAuthorship W4367016683A5012777103 @default.
- W4367016683 hasAuthorship W4367016683A5024396777 @default.
- W4367016683 hasAuthorship W4367016683A5037835022 @default.
- W4367016683 hasAuthorship W4367016683A5061293928 @default.
- W4367016683 hasAuthorship W4367016683A5080995977 @default.
- W4367016683 hasAuthorship W4367016683A5088606308 @default.
- W4367016683 hasConcept C106487976 @default.
- W4367016683 hasConcept C111030470 @default.
- W4367016683 hasConcept C11413529 @default.
- W4367016683 hasConcept C121332964 @default.
- W4367016683 hasConcept C124101348 @default.
- W4367016683 hasConcept C124851039 @default.
- W4367016683 hasConcept C154945302 @default.
- W4367016683 hasConcept C155281189 @default.
- W4367016683 hasConcept C159985019 @default.
- W4367016683 hasConcept C17349429 @default.
- W4367016683 hasConcept C180016635 @default.
- W4367016683 hasConcept C192562407 @default.
- W4367016683 hasConcept C202444582 @default.
- W4367016683 hasConcept C33923547 @default.
- W4367016683 hasConcept C41008148 @default.
- W4367016683 hasConcept C62520636 @default.
- W4367016683 hasConcept C73555534 @default.
- W4367016683 hasConcept C739882 @default.
- W4367016683 hasConcept C78548338 @default.
- W4367016683 hasConcept C79337645 @default.
- W4367016683 hasConcept C84114770 @default.
- W4367016683 hasConceptScore W4367016683C106487976 @default.
- W4367016683 hasConceptScore W4367016683C111030470 @default.
- W4367016683 hasConceptScore W4367016683C11413529 @default.
- W4367016683 hasConceptScore W4367016683C121332964 @default.
- W4367016683 hasConceptScore W4367016683C124101348 @default.
- W4367016683 hasConceptScore W4367016683C124851039 @default.
- W4367016683 hasConceptScore W4367016683C154945302 @default.
- W4367016683 hasConceptScore W4367016683C155281189 @default.
- W4367016683 hasConceptScore W4367016683C159985019 @default.