Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016697> ?p ?o ?g. }
- W4367016697 endingPage "12273" @default.
- W4367016697 startingPage "12263" @default.
- W4367016697 abstract "Thanks to the full play of the synergy of local node sets, fog Internet of Things (IoT) technology has become the focus of many researchers. Unfortunately, the data transmission of the sensing terminal therein has the risk of being eavesdropped, due to the openness of the wireless channel and the large-scale deployment of different types of terminals. Meanwhile, the encryption method based on cryptography is difficult to apply to the IoT terminals with limited capacity because of its high-computational complexity. This article considers the use of physical layer security technology where the fog node improves the secrecy capacity of the desired channel by sending artificial noise to the untrusted third party to ensure the reliable transmission of data. Specifically, an intelligent resource allocation method based on deep reinforcement learning (DRL) is proposed to realize the rapid allocation of link resources and interference noise power in the scene, where the relevant elements, such as state, action, and reward, are reasonably designed. Simulation results demonstrate that the presented algorithm could effectively resolves the allocation problem, and its transmission delay obviously outperforms that of multiple comparison methods." @default.
- W4367016697 created "2023-04-27" @default.
- W4367016697 creator A5001148224 @default.
- W4367016697 creator A5004366207 @default.
- W4367016697 creator A5030009997 @default.
- W4367016697 creator A5030868890 @default.
- W4367016697 creator A5057706928 @default.
- W4367016697 creator A5077251819 @default.
- W4367016697 date "2023-06-01" @default.
- W4367016697 modified "2023-10-18" @default.
- W4367016697 title "Toward Secure Transmission in Fog Internet of Things Using Intelligent Resource Allocation" @default.
- W4367016697 cites W2007529001 @default.
- W4367016697 cites W2043769961 @default.
- W4367016697 cites W2128153585 @default.
- W4367016697 cites W2154997814 @default.
- W4367016697 cites W2472333518 @default.
- W4367016697 cites W2516101689 @default.
- W4367016697 cites W2615926310 @default.
- W4367016697 cites W2681138350 @default.
- W4367016697 cites W2795211475 @default.
- W4367016697 cites W2799783748 @default.
- W4367016697 cites W2820531506 @default.
- W4367016697 cites W2890910667 @default.
- W4367016697 cites W2898652425 @default.
- W4367016697 cites W2922273628 @default.
- W4367016697 cites W2935047029 @default.
- W4367016697 cites W2949619369 @default.
- W4367016697 cites W2957978631 @default.
- W4367016697 cites W2963684920 @default.
- W4367016697 cites W2964113506 @default.
- W4367016697 cites W2999798127 @default.
- W4367016697 cites W3000194269 @default.
- W4367016697 cites W3015784396 @default.
- W4367016697 cites W3028457518 @default.
- W4367016697 cites W3033059790 @default.
- W4367016697 cites W3040265483 @default.
- W4367016697 cites W3085733781 @default.
- W4367016697 cites W3091780448 @default.
- W4367016697 cites W3097179687 @default.
- W4367016697 cites W3105108969 @default.
- W4367016697 cites W3109538715 @default.
- W4367016697 cites W3124002030 @default.
- W4367016697 cites W3205430911 @default.
- W4367016697 cites W4200620119 @default.
- W4367016697 cites W4213446031 @default.
- W4367016697 cites W4220979741 @default.
- W4367016697 cites W4226176687 @default.
- W4367016697 cites W4240399023 @default.
- W4367016697 cites W4280638404 @default.
- W4367016697 cites W4283709734 @default.
- W4367016697 cites W4285505039 @default.
- W4367016697 cites W4286567563 @default.
- W4367016697 cites W4289823200 @default.
- W4367016697 cites W4295308199 @default.
- W4367016697 cites W4312040382 @default.
- W4367016697 cites W4312438512 @default.
- W4367016697 cites W4313306374 @default.
- W4367016697 cites W4322706622 @default.
- W4367016697 doi "https://doi.org/10.1109/jsen.2023.3269024" @default.
- W4367016697 hasPublicationYear "2023" @default.
- W4367016697 type Work @default.
- W4367016697 citedByCount "2" @default.
- W4367016697 countsByYear W43670166972023 @default.
- W4367016697 crossrefType "journal-article" @default.
- W4367016697 hasAuthorship W4367016697A5001148224 @default.
- W4367016697 hasAuthorship W4367016697A5004366207 @default.
- W4367016697 hasAuthorship W4367016697A5030009997 @default.
- W4367016697 hasAuthorship W4367016697A5030868890 @default.
- W4367016697 hasAuthorship W4367016697A5057706928 @default.
- W4367016697 hasAuthorship W4367016697A5077251819 @default.
- W4367016697 hasConcept C105339364 @default.
- W4367016697 hasConcept C108037233 @default.
- W4367016697 hasConcept C111919701 @default.
- W4367016697 hasConcept C120314980 @default.
- W4367016697 hasConcept C127162648 @default.
- W4367016697 hasConcept C127413603 @default.
- W4367016697 hasConcept C148730421 @default.
- W4367016697 hasConcept C19247436 @default.
- W4367016697 hasConcept C2776452267 @default.
- W4367016697 hasConcept C2779814227 @default.
- W4367016697 hasConcept C2780909371 @default.
- W4367016697 hasConcept C29202148 @default.
- W4367016697 hasConcept C31258907 @default.
- W4367016697 hasConcept C38652104 @default.
- W4367016697 hasConcept C41008148 @default.
- W4367016697 hasConcept C555944384 @default.
- W4367016697 hasConcept C62611344 @default.
- W4367016697 hasConcept C66938386 @default.
- W4367016697 hasConcept C761482 @default.
- W4367016697 hasConcept C76155785 @default.
- W4367016697 hasConceptScore W4367016697C105339364 @default.
- W4367016697 hasConceptScore W4367016697C108037233 @default.
- W4367016697 hasConceptScore W4367016697C111919701 @default.
- W4367016697 hasConceptScore W4367016697C120314980 @default.
- W4367016697 hasConceptScore W4367016697C127162648 @default.
- W4367016697 hasConceptScore W4367016697C127413603 @default.
- W4367016697 hasConceptScore W4367016697C148730421 @default.
- W4367016697 hasConceptScore W4367016697C19247436 @default.