Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016821> ?p ?o ?g. }
- W4367016821 endingPage "9984" @default.
- W4367016821 startingPage "9973" @default.
- W4367016821 abstract "Urban metro flow prediction is of great value for metro operation scheduling, passenger flow management and personal travel planning. However, the problem is challenging. First, different metro stations, e.g. transfer stations and non-transfer stations have unique traffic patterns. Second, it is difficult to model complex spatio-temporal dynamic relation of metro stations. To address these challenges, we develop a spatio-temporal dynamic graph relational learning model (STDGRL) to predict urban metro station flow. First, we propose a spatio-temporal node embedding representation module to capture the traffic patterns of different stations. Second, we employ a dynamic graph relationship learning module to learn dynamic spatial relationships between metro stations without a predefined graph adjacency matrix. Finally, we provide a transformer-based long-term relationship prediction module for long-term metro flow prediction. Extensive experiments are conducted based on metro data in four cities, China, with experimental results demonstrating the advantages of our method compared over 14 baselines for urban metro flow prediction." @default.
- W4367016821 created "2023-04-27" @default.
- W4367016821 creator A5037786601 @default.
- W4367016821 creator A5070559820 @default.
- W4367016821 creator A5073011466 @default.
- W4367016821 creator A5074242817 @default.
- W4367016821 creator A5075282934 @default.
- W4367016821 creator A5087854367 @default.
- W4367016821 creator A5089797140 @default.
- W4367016821 date "2023-10-01" @default.
- W4367016821 modified "2023-10-05" @default.
- W4367016821 title "Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow Prediction" @default.
- W4367016821 cites W1875626450 @default.
- W4367016821 cites W1964357740 @default.
- W4367016821 cites W1982978808 @default.
- W4367016821 cites W2024558842 @default.
- W4367016821 cites W2064675550 @default.
- W4367016821 cites W2074991364 @default.
- W4367016821 cites W2194775991 @default.
- W4367016821 cites W2528639018 @default.
- W4367016821 cites W2530386080 @default.
- W4367016821 cites W2531473348 @default.
- W4367016821 cites W2573587735 @default.
- W4367016821 cites W2793820729 @default.
- W4367016821 cites W2808097153 @default.
- W4367016821 cites W2898770554 @default.
- W4367016821 cites W2899619587 @default.
- W4367016821 cites W2900471328 @default.
- W4367016821 cites W2901295635 @default.
- W4367016821 cites W2901504064 @default.
- W4367016821 cites W2903871660 @default.
- W4367016821 cites W2910892140 @default.
- W4367016821 cites W2912985636 @default.
- W4367016821 cites W2962790412 @default.
- W4367016821 cites W2964199361 @default.
- W4367016821 cites W2965341826 @default.
- W4367016821 cites W2996879655 @default.
- W4367016821 cites W2997848713 @default.
- W4367016821 cites W2998652672 @default.
- W4367016821 cites W3000301417 @default.
- W4367016821 cites W3003217120 @default.
- W4367016821 cites W3015553263 @default.
- W4367016821 cites W3027983943 @default.
- W4367016821 cites W3034944009 @default.
- W4367016821 cites W3049690032 @default.
- W4367016821 cites W3080253043 @default.
- W4367016821 cites W3091014027 @default.
- W4367016821 cites W3093639344 @default.
- W4367016821 cites W3103720336 @default.
- W4367016821 cites W3109146615 @default.
- W4367016821 cites W3136115914 @default.
- W4367016821 cites W3175925542 @default.
- W4367016821 cites W4210257598 @default.
- W4367016821 doi "https://doi.org/10.1109/tkde.2023.3269771" @default.
- W4367016821 hasPublicationYear "2023" @default.
- W4367016821 type Work @default.
- W4367016821 citedByCount "3" @default.
- W4367016821 countsByYear W43670168212023 @default.
- W4367016821 crossrefType "journal-article" @default.
- W4367016821 hasAuthorship W4367016821A5037786601 @default.
- W4367016821 hasAuthorship W4367016821A5070559820 @default.
- W4367016821 hasAuthorship W4367016821A5073011466 @default.
- W4367016821 hasAuthorship W4367016821A5074242817 @default.
- W4367016821 hasAuthorship W4367016821A5075282934 @default.
- W4367016821 hasAuthorship W4367016821A5087854367 @default.
- W4367016821 hasAuthorship W4367016821A5089797140 @default.
- W4367016821 hasBestOaLocation W43670168212 @default.
- W4367016821 hasConcept C119857082 @default.
- W4367016821 hasConcept C124101348 @default.
- W4367016821 hasConcept C127413603 @default.
- W4367016821 hasConcept C132525143 @default.
- W4367016821 hasConcept C22212356 @default.
- W4367016821 hasConcept C25343380 @default.
- W4367016821 hasConcept C2778459138 @default.
- W4367016821 hasConcept C2780434240 @default.
- W4367016821 hasConcept C41008148 @default.
- W4367016821 hasConcept C80444323 @default.
- W4367016821 hasConceptScore W4367016821C119857082 @default.
- W4367016821 hasConceptScore W4367016821C124101348 @default.
- W4367016821 hasConceptScore W4367016821C127413603 @default.
- W4367016821 hasConceptScore W4367016821C132525143 @default.
- W4367016821 hasConceptScore W4367016821C22212356 @default.
- W4367016821 hasConceptScore W4367016821C25343380 @default.
- W4367016821 hasConceptScore W4367016821C2778459138 @default.
- W4367016821 hasConceptScore W4367016821C2780434240 @default.
- W4367016821 hasConceptScore W4367016821C41008148 @default.
- W4367016821 hasConceptScore W4367016821C80444323 @default.
- W4367016821 hasFunder F4320321001 @default.
- W4367016821 hasIssue "10" @default.
- W4367016821 hasLocation W43670168211 @default.
- W4367016821 hasLocation W43670168212 @default.
- W4367016821 hasOpenAccess W4367016821 @default.
- W4367016821 hasPrimaryLocation W43670168211 @default.
- W4367016821 hasRelatedWork W2030388591 @default.
- W4367016821 hasRelatedWork W2145759443 @default.
- W4367016821 hasRelatedWork W2347219288 @default.
- W4367016821 hasRelatedWork W2353506858 @default.
- W4367016821 hasRelatedWork W2358481031 @default.