Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367016953> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4367016953 endingPage "15" @default.
- W4367016953 startingPage "1" @default.
- W4367016953 abstract "Mobile edge computing (MEC) integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. This paper investigates the task assignment problem for cooperative MEC networks in which a set of geographically distributed heterogeneous edge servers not only cooperate with remote cloud data centers but also help each other to jointly process user tasks. We introduce a novel stochastic MEC cooperation framework to model the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment optimization problem is formulated by taking into consideration dynamic network states, uncertain node computing capabilities and task arrivals, as well as the heterogeneity of the involved entities. We then develop and compare three task assignment algorithms, based on different deep reinforcement learning (DRL) approaches, value-based, policy-based, and hybrid approaches. In addition, to reduce the search space and computation complexity of the algorithms, we propose decomposition and function approximation techniques by leveraging the structure of the underlying problem. The evaluation results show that the proposed DRL-based task assignment schemes outperform the existing algorithms, and the hybrid actor-critic scheme performs the best under dynamic MEC network environments." @default.
- W4367016953 created "2023-04-27" @default.
- W4367016953 creator A5001744022 @default.
- W4367016953 creator A5029419012 @default.
- W4367016953 creator A5042514230 @default.
- W4367016953 creator A5081111859 @default.
- W4367016953 date "2023-01-01" @default.
- W4367016953 modified "2023-09-25" @default.
- W4367016953 title "Deep Reinforcement Learning-based Task Assignment for Cooperative Mobile Edge Computing" @default.
- W4367016953 doi "https://doi.org/10.1109/tmc.2023.3270242" @default.
- W4367016953 hasPublicationYear "2023" @default.
- W4367016953 type Work @default.
- W4367016953 citedByCount "0" @default.
- W4367016953 crossrefType "journal-article" @default.
- W4367016953 hasAuthorship W4367016953A5001744022 @default.
- W4367016953 hasAuthorship W4367016953A5029419012 @default.
- W4367016953 hasAuthorship W4367016953A5042514230 @default.
- W4367016953 hasAuthorship W4367016953A5081111859 @default.
- W4367016953 hasConcept C111919701 @default.
- W4367016953 hasConcept C120314980 @default.
- W4367016953 hasConcept C127413603 @default.
- W4367016953 hasConcept C154945302 @default.
- W4367016953 hasConcept C162307627 @default.
- W4367016953 hasConcept C162324750 @default.
- W4367016953 hasConcept C187736073 @default.
- W4367016953 hasConcept C2776061582 @default.
- W4367016953 hasConcept C2778456923 @default.
- W4367016953 hasConcept C2780451532 @default.
- W4367016953 hasConcept C31258907 @default.
- W4367016953 hasConcept C41008148 @default.
- W4367016953 hasConcept C62611344 @default.
- W4367016953 hasConcept C66938386 @default.
- W4367016953 hasConcept C79974875 @default.
- W4367016953 hasConcept C93996380 @default.
- W4367016953 hasConcept C97541855 @default.
- W4367016953 hasConceptScore W4367016953C111919701 @default.
- W4367016953 hasConceptScore W4367016953C120314980 @default.
- W4367016953 hasConceptScore W4367016953C127413603 @default.
- W4367016953 hasConceptScore W4367016953C154945302 @default.
- W4367016953 hasConceptScore W4367016953C162307627 @default.
- W4367016953 hasConceptScore W4367016953C162324750 @default.
- W4367016953 hasConceptScore W4367016953C187736073 @default.
- W4367016953 hasConceptScore W4367016953C2776061582 @default.
- W4367016953 hasConceptScore W4367016953C2778456923 @default.
- W4367016953 hasConceptScore W4367016953C2780451532 @default.
- W4367016953 hasConceptScore W4367016953C31258907 @default.
- W4367016953 hasConceptScore W4367016953C41008148 @default.
- W4367016953 hasConceptScore W4367016953C62611344 @default.
- W4367016953 hasConceptScore W4367016953C66938386 @default.
- W4367016953 hasConceptScore W4367016953C79974875 @default.
- W4367016953 hasConceptScore W4367016953C93996380 @default.
- W4367016953 hasConceptScore W4367016953C97541855 @default.
- W4367016953 hasLocation W43670169531 @default.
- W4367016953 hasOpenAccess W4367016953 @default.
- W4367016953 hasPrimaryLocation W43670169531 @default.
- W4367016953 hasRelatedWork W2765680238 @default.
- W4367016953 hasRelatedWork W2945616868 @default.
- W4367016953 hasRelatedWork W3006227554 @default.
- W4367016953 hasRelatedWork W3174690704 @default.
- W4367016953 hasRelatedWork W3176164341 @default.
- W4367016953 hasRelatedWork W3185591558 @default.
- W4367016953 hasRelatedWork W4200573894 @default.
- W4367016953 hasRelatedWork W4223535265 @default.
- W4367016953 hasRelatedWork W4225854632 @default.
- W4367016953 hasRelatedWork W4321462912 @default.
- W4367016953 isParatext "false" @default.
- W4367016953 isRetracted "false" @default.
- W4367016953 workType "article" @default.