Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367018915> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4367018915 abstract "Introduction Rapid detection of large vessel occlusion (LVO) is very crucial in triaging stroke patients potentially candidates for mechanical thrombectomy (MT). Hyperdense vessel sign (HDVS) is one of the earliest ischemic changes in non‐contrast CT scan (NCCT) indicating LVO stroke. Artificial intelligence emerged to detect HDVS with the advantages of faster acquisition, less variation, and a lower need for experience than the usual detection. We aimed to identify the diagnostic performance of automated software (e‐Stroke, Brainomix) in HDVS detection. Methods A prospectively collectedMT database from March 2020 to August 2021 was reviewed. Patients were included if they had intracranial internal carotid artery or middle cerebral artery M1 or M2 occlusion. Cases with HDVS were identified through the routine 2.5‐mm slice thickness NCCT scans after being correlated with patients’ clinical information and confirmed with CT angiography (CTA) scans. NCCT scans were classified according to slice thickness into two groups: 2.5‐mm scans and 0.625‐mm generated scans. All NCCT scans were read by e‐Stroke software, then deidentified and reviewed by two stroke neurologists who were blinded to any clinical, other imaging, or therapeutic information. They were required to record the presence/laterality of HDVS before and after observing other NCCT early ischemic changes like gaze deviation, loss of insular ribbon, caudate or lentiform hypodensity. ROC curve analysis was used to estimate sensitivity and specificity and the area under the curve (AUC) was compared using DeLong’s test. Inter‐rater agreement between the two readers’ final reads, e‐Stroke, and the standard read was measured using the Fleiss Kappa test. Results Among 304 patients included in the study, 37.7% had HDVS. Approximately 44% of the scans had 2.5‐mm slice thickness and 56% had 0.625‐mm slice thickness. The e‐Stroke software identified HDVS with a sensitivity of 63% and a specificity of 71% (Table 1). The mean AUC value of e‐Stroke HDVS detection (0.67[0.61‐0.74]) was similar to reader‐1 (0.68[0.62‐0.74];p = 0.87) and reader‐2 (0.63[0.57‐0.70];p = 0.56). HDVS detection improved by reader‐1(0.78[0.72‐0.83];p = 0.03) after observing other early ischemic changes on the same scans, but reader‐2 performance remained similar to e‐Stroke (0.69[0.63‐0.76];p = 0.71). AUC, sensitivity and specificity ofHDVS detection by e‐Stroke were significantly higher using 2.5‐mm compared to 0.625‐mm sliced NCCT scans (0.78[0.70‐0.86],sensitivity 70%,specificity 86%;p< 0.001) vs (0.58[0.50‐0.67],sensitivity 56%,specificity 61%;p = 0.06) respectively;p = 0.01. The readers also had higher AUC values with 2.5‐mm scans but not statistically significant, (0.74[0.66‐0.83] vs 0.64[0.56‐0.73];p = 0.18) for reader‐1 and (0.68[0.59‐0.77] vs 0.57[0.48‐0.66];p = 0.23) for reader‐2. The same after the final read, (0.85[0.78‐0.92] vs 0.75[0.67‐0.82];p = 0.08) for reader‐1 and (0.73[0.65‐0.82] vs 0.67[0.58‐0.76];p = 0.43) for reader‐2. Similarly, inter‐rater agreement was higher using 2.5‐mm sliced scans, k = 0.50(0.43‐0.75) compared to0.625‐mm scans,k = 0.27(0.21‐0.33). Conclusions Artificial intelligence (e‐Stroke software) has comparable sensitivity and specificity to human readers in HDVS detection. For e‐Stroke software, 2.5‐mm sliced CT scans are better to identifyHDVS compared to 0.625‐mm scans." @default.
- W4367018915 created "2023-04-27" @default.
- W4367018915 creator A5007926373 @default.
- W4367018915 creator A5045273106 @default.
- W4367018915 creator A5045952323 @default.
- W4367018915 creator A5075816868 @default.
- W4367018915 creator A5078095185 @default.
- W4367018915 creator A5079007009 @default.
- W4367018915 creator A5080556542 @default.
- W4367018915 date "2023-03-01" @default.
- W4367018915 modified "2023-09-27" @default.
- W4367018915 title "Abstract Number ‐ 51: Automated Versus Human Hyperdense Vessel Sign Detection Using Non‐Contrast Computed Tomography Scans" @default.
- W4367018915 doi "https://doi.org/10.1161/svin.03.suppl_1.051" @default.
- W4367018915 hasPublicationYear "2023" @default.
- W4367018915 type Work @default.
- W4367018915 citedByCount "0" @default.
- W4367018915 crossrefType "journal-article" @default.
- W4367018915 hasAuthorship W4367018915A5007926373 @default.
- W4367018915 hasAuthorship W4367018915A5045273106 @default.
- W4367018915 hasAuthorship W4367018915A5045952323 @default.
- W4367018915 hasAuthorship W4367018915A5075816868 @default.
- W4367018915 hasAuthorship W4367018915A5078095185 @default.
- W4367018915 hasAuthorship W4367018915A5079007009 @default.
- W4367018915 hasAuthorship W4367018915A5080556542 @default.
- W4367018915 hasBestOaLocation W43670189151 @default.
- W4367018915 hasConcept C118552586 @default.
- W4367018915 hasConcept C126322002 @default.
- W4367018915 hasConcept C126838900 @default.
- W4367018915 hasConcept C127413603 @default.
- W4367018915 hasConcept C141071460 @default.
- W4367018915 hasConcept C154945302 @default.
- W4367018915 hasConcept C16568411 @default.
- W4367018915 hasConcept C2775841333 @default.
- W4367018915 hasConcept C2776268601 @default.
- W4367018915 hasConcept C2776502983 @default.
- W4367018915 hasConcept C2779889316 @default.
- W4367018915 hasConcept C2780643987 @default.
- W4367018915 hasConcept C2780645631 @default.
- W4367018915 hasConcept C2781347138 @default.
- W4367018915 hasConcept C2989005 @default.
- W4367018915 hasConcept C41008148 @default.
- W4367018915 hasConcept C541997718 @default.
- W4367018915 hasConcept C58471807 @default.
- W4367018915 hasConcept C71924100 @default.
- W4367018915 hasConcept C78519656 @default.
- W4367018915 hasConceptScore W4367018915C118552586 @default.
- W4367018915 hasConceptScore W4367018915C126322002 @default.
- W4367018915 hasConceptScore W4367018915C126838900 @default.
- W4367018915 hasConceptScore W4367018915C127413603 @default.
- W4367018915 hasConceptScore W4367018915C141071460 @default.
- W4367018915 hasConceptScore W4367018915C154945302 @default.
- W4367018915 hasConceptScore W4367018915C16568411 @default.
- W4367018915 hasConceptScore W4367018915C2775841333 @default.
- W4367018915 hasConceptScore W4367018915C2776268601 @default.
- W4367018915 hasConceptScore W4367018915C2776502983 @default.
- W4367018915 hasConceptScore W4367018915C2779889316 @default.
- W4367018915 hasConceptScore W4367018915C2780643987 @default.
- W4367018915 hasConceptScore W4367018915C2780645631 @default.
- W4367018915 hasConceptScore W4367018915C2781347138 @default.
- W4367018915 hasConceptScore W4367018915C2989005 @default.
- W4367018915 hasConceptScore W4367018915C41008148 @default.
- W4367018915 hasConceptScore W4367018915C541997718 @default.
- W4367018915 hasConceptScore W4367018915C58471807 @default.
- W4367018915 hasConceptScore W4367018915C71924100 @default.
- W4367018915 hasConceptScore W4367018915C78519656 @default.
- W4367018915 hasIssue "S1" @default.
- W4367018915 hasLocation W43670189151 @default.
- W4367018915 hasOpenAccess W4367018915 @default.
- W4367018915 hasPrimaryLocation W43670189151 @default.
- W4367018915 hasRelatedWork W141524600 @default.
- W4367018915 hasRelatedWork W2007412122 @default.
- W4367018915 hasRelatedWork W2055284993 @default.
- W4367018915 hasRelatedWork W2077566581 @default.
- W4367018915 hasRelatedWork W2084623411 @default.
- W4367018915 hasRelatedWork W25883746 @default.
- W4367018915 hasRelatedWork W2598156330 @default.
- W4367018915 hasRelatedWork W3003828187 @default.
- W4367018915 hasRelatedWork W4281393254 @default.
- W4367018915 hasRelatedWork W4283266891 @default.
- W4367018915 hasVolume "3" @default.
- W4367018915 isParatext "false" @default.
- W4367018915 isRetracted "false" @default.
- W4367018915 workType "article" @default.