Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367043373> ?p ?o ?g. }
- W4367043373 endingPage "e02096" @default.
- W4367043373 startingPage "e02096" @default.
- W4367043373 abstract "The shear strength of stud connectors is essential for designing steel-concrete structures, which is assessed only through a push-out test or available design codes. An alternative technique that eliminates the need to conduct the push-out test is soft computing (SC). The performance of any machine learning (ML) based prediction model depends on the sensitive parameters used in the model development. This paper performs a sensitivity analysis on the shear strength prediction of stud connectors embedded in concrete. A system identification (SI) was conducted using an adaptive neuro-fuzzy inference system (ANFIS) to find the most sensitive combinations of input variables. Six different models were developed based on the SI results. Three machine learning algorithms, including ANFIS, extreme learning machine (ELM), and artificial neural network (ANN), were used to estimate the shear strength of stud connectors in each developed model. The results show that the number of studs (n) is the most sensitive parameter in predicting shear strength. Irrespective of concrete compressive strength (fc), the combination of the stud diameter (ϕ), number of studs, and stud spacing (s) can predict the shear strength with the accuracy of ±8.67 kN. The robustness of the three AI algorithms was evaluated using the Monte Carlo Simulation method. The individual conditional expectation (ICE) was also presented to visualize the correlation between the target shear strength and the six predictors. The results of this study show that sensitivity analysis is an essential tool for any data-driven ML model for accurate prediction." @default.
- W4367043373 created "2023-04-27" @default.
- W4367043373 creator A5000486639 @default.
- W4367043373 creator A5047638022 @default.
- W4367043373 creator A5048395560 @default.
- W4367043373 creator A5075290910 @default.
- W4367043373 creator A5080846224 @default.
- W4367043373 date "2023-07-01" @default.
- W4367043373 modified "2023-09-25" @default.
- W4367043373 title "Sensitivity and robustness analysis of adaptive neuro-fuzzy inference system (ANFIS) for shear strength prediction of stud connectors in concrete" @default.
- W4367043373 cites W1966279154 @default.
- W4367043373 cites W1983735453 @default.
- W4367043373 cites W2019207321 @default.
- W4367043373 cites W2019715411 @default.
- W4367043373 cites W2020322798 @default.
- W4367043373 cites W2030955291 @default.
- W4367043373 cites W2037501499 @default.
- W4367043373 cites W2053061982 @default.
- W4367043373 cites W2053177642 @default.
- W4367043373 cites W2058647822 @default.
- W4367043373 cites W2072327598 @default.
- W4367043373 cites W2073605666 @default.
- W4367043373 cites W2075851616 @default.
- W4367043373 cites W2101651976 @default.
- W4367043373 cites W2111072639 @default.
- W4367043373 cites W2135458935 @default.
- W4367043373 cites W2147409517 @default.
- W4367043373 cites W2160181111 @default.
- W4367043373 cites W2319200168 @default.
- W4367043373 cites W2489674748 @default.
- W4367043373 cites W2562296772 @default.
- W4367043373 cites W2591533107 @default.
- W4367043373 cites W2593563201 @default.
- W4367043373 cites W2613297912 @default.
- W4367043373 cites W2736354505 @default.
- W4367043373 cites W2789757555 @default.
- W4367043373 cites W2886970725 @default.
- W4367043373 cites W2888392190 @default.
- W4367043373 cites W2890975241 @default.
- W4367043373 cites W2898233566 @default.
- W4367043373 cites W2898933488 @default.
- W4367043373 cites W2907223767 @default.
- W4367043373 cites W2920965395 @default.
- W4367043373 cites W2943973631 @default.
- W4367043373 cites W2945212036 @default.
- W4367043373 cites W2947594061 @default.
- W4367043373 cites W2996926624 @default.
- W4367043373 cites W3008563650 @default.
- W4367043373 cites W3048264598 @default.
- W4367043373 cites W3126813375 @default.
- W4367043373 cites W3165452989 @default.
- W4367043373 cites W3169136742 @default.
- W4367043373 cites W3201282081 @default.
- W4367043373 cites W4205282164 @default.
- W4367043373 cites W4223450712 @default.
- W4367043373 cites W4320811016 @default.
- W4367043373 doi "https://doi.org/10.1016/j.cscm.2023.e02096" @default.
- W4367043373 hasPublicationYear "2023" @default.
- W4367043373 type Work @default.
- W4367043373 citedByCount "0" @default.
- W4367043373 crossrefType "journal-article" @default.
- W4367043373 hasAuthorship W4367043373A5000486639 @default.
- W4367043373 hasAuthorship W4367043373A5047638022 @default.
- W4367043373 hasAuthorship W4367043373A5048395560 @default.
- W4367043373 hasAuthorship W4367043373A5075290910 @default.
- W4367043373 hasAuthorship W4367043373A5080846224 @default.
- W4367043373 hasBestOaLocation W43670433731 @default.
- W4367043373 hasConcept C104317684 @default.
- W4367043373 hasConcept C119857082 @default.
- W4367043373 hasConcept C127413603 @default.
- W4367043373 hasConcept C154945302 @default.
- W4367043373 hasConcept C159985019 @default.
- W4367043373 hasConcept C185592680 @default.
- W4367043373 hasConcept C186108316 @default.
- W4367043373 hasConcept C192562407 @default.
- W4367043373 hasConcept C195975749 @default.
- W4367043373 hasConcept C21200559 @default.
- W4367043373 hasConcept C24326235 @default.
- W4367043373 hasConcept C2780150128 @default.
- W4367043373 hasConcept C30407753 @default.
- W4367043373 hasConcept C41008148 @default.
- W4367043373 hasConcept C50644808 @default.
- W4367043373 hasConcept C55493867 @default.
- W4367043373 hasConcept C58166 @default.
- W4367043373 hasConcept C63479239 @default.
- W4367043373 hasConcept C66938386 @default.
- W4367043373 hasConceptScore W4367043373C104317684 @default.
- W4367043373 hasConceptScore W4367043373C119857082 @default.
- W4367043373 hasConceptScore W4367043373C127413603 @default.
- W4367043373 hasConceptScore W4367043373C154945302 @default.
- W4367043373 hasConceptScore W4367043373C159985019 @default.
- W4367043373 hasConceptScore W4367043373C185592680 @default.
- W4367043373 hasConceptScore W4367043373C186108316 @default.
- W4367043373 hasConceptScore W4367043373C192562407 @default.
- W4367043373 hasConceptScore W4367043373C195975749 @default.
- W4367043373 hasConceptScore W4367043373C21200559 @default.
- W4367043373 hasConceptScore W4367043373C24326235 @default.
- W4367043373 hasConceptScore W4367043373C2780150128 @default.