Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367044523> ?p ?o ?g. }
- W4367044523 abstract "Accurate carbon price forecasting can better allocate carbon emissions and thus ensure a balance between economic development and potential climate impacts. In this paper, we propose a new two-stage framework based on processes of decomposition and re-estimation to forecast prices across international carbon markets. We focus on the Emissions Trading System (ETS) in the EU, as well as the five main pilot schemes in China, spanning the period from May 2014 to January 2022. In this way, the raw carbon prices are first separated into multiple sub-factors and then reconstructed into factors of ‘trend’ and ‘period’ with the use of Singular Spectrum Analysis (SSA). Once the subsequences have been thus decomposed, we further apply six machine learning and deep learning methods, allowing the data to be assembled and thus facilitating the prediction of the final carbon price values. We find that from amongst these machine learning models, the Support vector regression (SSA-SVR) and Least squares support vector regression (SSA-LSSVR) stand out in terms of performance for the prediction of carbon prices in both the European ETS and equivalent models in China. Another interesting finding to come out of our experiments is that the sophisticated algorithms are far from being the best performing models in the prediction of carbon prices. Even after accounting for the impacts of the COVID-19 pandemic and other macro-economic variables, as well as the prices of other energy sources, our framework still works effectively." @default.
- W4367044523 created "2023-04-27" @default.
- W4367044523 creator A5009051090 @default.
- W4367044523 creator A5028859676 @default.
- W4367044523 creator A5044339128 @default.
- W4367044523 creator A5075749667 @default.
- W4367044523 date "2023-04-25" @default.
- W4367044523 modified "2023-09-30" @default.
- W4367044523 title "Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting" @default.
- W4367044523 cites W1596717185 @default.
- W4367044523 cites W1964337655 @default.
- W4367044523 cites W1975964493 @default.
- W4367044523 cites W2007221293 @default.
- W4367044523 cites W2018299604 @default.
- W4367044523 cites W2025727209 @default.
- W4367044523 cites W2028068740 @default.
- W4367044523 cites W2053211387 @default.
- W4367044523 cites W2060629445 @default.
- W4367044523 cites W2064675550 @default.
- W4367044523 cites W2065981691 @default.
- W4367044523 cites W2087946919 @default.
- W4367044523 cites W2101758271 @default.
- W4367044523 cites W2106708873 @default.
- W4367044523 cites W2126709108 @default.
- W4367044523 cites W2156397254 @default.
- W4367044523 cites W2571217044 @default.
- W4367044523 cites W2586354609 @default.
- W4367044523 cites W2591365342 @default.
- W4367044523 cites W2751846330 @default.
- W4367044523 cites W2770138528 @default.
- W4367044523 cites W2781854549 @default.
- W4367044523 cites W2782085727 @default.
- W4367044523 cites W2791205062 @default.
- W4367044523 cites W2890866454 @default.
- W4367044523 cites W2892340710 @default.
- W4367044523 cites W2896761929 @default.
- W4367044523 cites W2911964244 @default.
- W4367044523 cites W2921214451 @default.
- W4367044523 cites W2948535221 @default.
- W4367044523 cites W2975025053 @default.
- W4367044523 cites W2990569776 @default.
- W4367044523 cites W3026479760 @default.
- W4367044523 cites W3088767018 @default.
- W4367044523 cites W3093891645 @default.
- W4367044523 cites W3097735338 @default.
- W4367044523 cites W3102476541 @default.
- W4367044523 cites W3112111234 @default.
- W4367044523 cites W3113077790 @default.
- W4367044523 cites W3118070213 @default.
- W4367044523 cites W3125930467 @default.
- W4367044523 cites W3132961639 @default.
- W4367044523 cites W3153823682 @default.
- W4367044523 cites W3155688110 @default.
- W4367044523 cites W3164970439 @default.
- W4367044523 cites W3170294352 @default.
- W4367044523 cites W3196503391 @default.
- W4367044523 cites W3204382835 @default.
- W4367044523 cites W3206962479 @default.
- W4367044523 cites W3215379342 @default.
- W4367044523 cites W4206747265 @default.
- W4367044523 cites W4212854914 @default.
- W4367044523 cites W4224269961 @default.
- W4367044523 cites W4280542850 @default.
- W4367044523 cites W4281296276 @default.
- W4367044523 cites W4293072244 @default.
- W4367044523 cites W4311089293 @default.
- W4367044523 doi "https://doi.org/10.1007/s10479-023-05327-0" @default.
- W4367044523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37361057" @default.
- W4367044523 hasPublicationYear "2023" @default.
- W4367044523 type Work @default.
- W4367044523 citedByCount "0" @default.
- W4367044523 crossrefType "journal-article" @default.
- W4367044523 hasAuthorship W4367044523A5009051090 @default.
- W4367044523 hasAuthorship W4367044523A5028859676 @default.
- W4367044523 hasAuthorship W4367044523A5044339128 @default.
- W4367044523 hasAuthorship W4367044523A5075749667 @default.
- W4367044523 hasBestOaLocation W43670445231 @default.
- W4367044523 hasConcept C104779481 @default.
- W4367044523 hasConcept C11413529 @default.
- W4367044523 hasConcept C119857082 @default.
- W4367044523 hasConcept C12267149 @default.
- W4367044523 hasConcept C132651083 @default.
- W4367044523 hasConcept C133029050 @default.
- W4367044523 hasConcept C136272165 @default.
- W4367044523 hasConcept C140205800 @default.
- W4367044523 hasConcept C149782125 @default.
- W4367044523 hasConcept C154945302 @default.
- W4367044523 hasConcept C162324750 @default.
- W4367044523 hasConcept C18903297 @default.
- W4367044523 hasConcept C22789450 @default.
- W4367044523 hasConcept C2779200991 @default.
- W4367044523 hasConcept C2993946284 @default.
- W4367044523 hasConcept C41008148 @default.
- W4367044523 hasConcept C86803240 @default.
- W4367044523 hasConceptScore W4367044523C104779481 @default.
- W4367044523 hasConceptScore W4367044523C11413529 @default.
- W4367044523 hasConceptScore W4367044523C119857082 @default.
- W4367044523 hasConceptScore W4367044523C12267149 @default.
- W4367044523 hasConceptScore W4367044523C132651083 @default.
- W4367044523 hasConceptScore W4367044523C133029050 @default.