Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367048552> ?p ?o ?g. }
- W4367048552 endingPage "100088" @default.
- W4367048552 startingPage "100088" @default.
- W4367048552 abstract "Contemporary fire dynamics is one of the most complex and least understood land surface phenomena. Global fire controls related to climate, vegetation, and anthropogenic activity are usually intertwined, and difficult to disentangle in a quantitative way. Here, we leveraged an ensemble of five machine learning (ML) models and multiple satellite-based observations to conduct global fire modeling for three fire metrics (burned area, fire number, and fire size), and quantified driving mechanisms underlying annual fire changes in a spatially resolved manner for the period 2003–2019. Ensemble learning is a meta-approach that combines multiple ML predictions to improve accuracy, robustness, and generalization performance. We found that the optimized ensemble ML well reproduced annual dynamics of global burned area (R2 = 0.90, P < 0.001), total fire numbers (R2 = 0.86, P < 0.001), and averaged fire size (R2 = 0.70, P < 0.001). Additionally, the ensemble ML captured key spatial patterns of multi-year mean magnitudes, annual variabilities, anomalies, and trends for different fire metrics. Our ML-based fire attributions further highlighted the dominant role of enhanced anthropogenic activity in reducing global burned area (−1.9 Mha/yr, P < 0.01), followed by climate control (−1.3 Mha/yr, P < 0.01) and insignificant positive vegetation control (0.4 Mha/yr, P = 0.60). Spatially, climate dominated a much larger burned area (53.7%) than human (23.4%) or vegetation control (22.9%); however, the counteracting effects from regional wetting and drying trends weakened the net climate impacts on global burned area. The fire number and fire size exhibited similar spatial control patterns with burned area; globally, however, fire number tended to be more affected by climate while fire size more influenced by human activities. Overall, our study confirmed the feasibility and efficiency of ensemble ML in global fire modeling and subsequent control attributions, providing a better understanding of contemporary fire regimes and contributing to robust fire projections in a changing environment." @default.
- W4367048552 created "2023-04-27" @default.
- W4367048552 creator A5002151975 @default.
- W4367048552 creator A5017795751 @default.
- W4367048552 creator A5033805838 @default.
- W4367048552 creator A5039606379 @default.
- W4367048552 creator A5043482154 @default.
- W4367048552 creator A5049458763 @default.
- W4367048552 creator A5053539657 @default.
- W4367048552 creator A5061830189 @default.
- W4367048552 creator A5080511482 @default.
- W4367048552 date "2023-06-01" @default.
- W4367048552 modified "2023-10-14" @default.
- W4367048552 title "Global fire modelling and control attributions based on the ensemble machine learning and satellite observations" @default.
- W4367048552 cites W1535679254 @default.
- W4367048552 cites W1991355610 @default.
- W4367048552 cites W1994154616 @default.
- W4367048552 cites W2037321678 @default.
- W4367048552 cites W2046627099 @default.
- W4367048552 cites W2122136101 @default.
- W4367048552 cites W2127490708 @default.
- W4367048552 cites W2131365239 @default.
- W4367048552 cites W2134315730 @default.
- W4367048552 cites W2154710695 @default.
- W4367048552 cites W2161143965 @default.
- W4367048552 cites W2171210136 @default.
- W4367048552 cites W2182087497 @default.
- W4367048552 cites W2301696792 @default.
- W4367048552 cites W2573821892 @default.
- W4367048552 cites W2580000994 @default.
- W4367048552 cites W2596816404 @default.
- W4367048552 cites W2662533946 @default.
- W4367048552 cites W2732607881 @default.
- W4367048552 cites W2771404115 @default.
- W4367048552 cites W2790537821 @default.
- W4367048552 cites W2794056824 @default.
- W4367048552 cites W2806385239 @default.
- W4367048552 cites W2883812019 @default.
- W4367048552 cites W2887685367 @default.
- W4367048552 cites W2900842202 @default.
- W4367048552 cites W2901312569 @default.
- W4367048552 cites W2905880828 @default.
- W4367048552 cites W2908971356 @default.
- W4367048552 cites W2911964244 @default.
- W4367048552 cites W2912077313 @default.
- W4367048552 cites W2938850315 @default.
- W4367048552 cites W2945526235 @default.
- W4367048552 cites W2945976633 @default.
- W4367048552 cites W2956384029 @default.
- W4367048552 cites W2956661266 @default.
- W4367048552 cites W2969997989 @default.
- W4367048552 cites W2970602317 @default.
- W4367048552 cites W2985300138 @default.
- W4367048552 cites W2991848483 @default.
- W4367048552 cites W2999644459 @default.
- W4367048552 cites W3007005249 @default.
- W4367048552 cites W3017033900 @default.
- W4367048552 cites W3017174959 @default.
- W4367048552 cites W3024923195 @default.
- W4367048552 cites W3055975969 @default.
- W4367048552 cites W3099079911 @default.
- W4367048552 cites W3105244966 @default.
- W4367048552 cites W3131004367 @default.
- W4367048552 cites W3144289852 @default.
- W4367048552 cites W3155498383 @default.
- W4367048552 cites W3186114342 @default.
- W4367048552 cites W4220977284 @default.
- W4367048552 cites W4221047666 @default.
- W4367048552 cites W4223653531 @default.
- W4367048552 cites W4225004802 @default.
- W4367048552 cites W4308448213 @default.
- W4367048552 doi "https://doi.org/10.1016/j.srs.2023.100088" @default.
- W4367048552 hasPublicationYear "2023" @default.
- W4367048552 type Work @default.
- W4367048552 citedByCount "0" @default.
- W4367048552 crossrefType "journal-article" @default.
- W4367048552 hasAuthorship W4367048552A5002151975 @default.
- W4367048552 hasAuthorship W4367048552A5017795751 @default.
- W4367048552 hasAuthorship W4367048552A5033805838 @default.
- W4367048552 hasAuthorship W4367048552A5039606379 @default.
- W4367048552 hasAuthorship W4367048552A5043482154 @default.
- W4367048552 hasAuthorship W4367048552A5049458763 @default.
- W4367048552 hasAuthorship W4367048552A5053539657 @default.
- W4367048552 hasAuthorship W4367048552A5061830189 @default.
- W4367048552 hasAuthorship W4367048552A5080511482 @default.
- W4367048552 hasBestOaLocation W43670485521 @default.
- W4367048552 hasConcept C100970517 @default.
- W4367048552 hasConcept C127313418 @default.
- W4367048552 hasConcept C127413603 @default.
- W4367048552 hasConcept C142724271 @default.
- W4367048552 hasConcept C146978453 @default.
- W4367048552 hasConcept C153294291 @default.
- W4367048552 hasConcept C19269812 @default.
- W4367048552 hasConcept C205649164 @default.
- W4367048552 hasConcept C2776133958 @default.
- W4367048552 hasConcept C39432304 @default.
- W4367048552 hasConcept C49204034 @default.
- W4367048552 hasConcept C71924100 @default.