Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367050208> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4367050208 abstract "Abstract Agricultural land management relies heavily on accurate and timely estimation of uncultivated land. Geographical heterogeneity limits the ability of the model to map crops at large scales. This is because the spectral profile of a crop varies spatially. In addition, the generation of robust deep features from remotely sensed SAR data sets is limited by the conventional deep learning models (lacks a mechanism for informative representation). To address these issues, this study proposes a novel dual-stream framework by combining convolutional neural network (CNN) and nested hierarchical transformer (NesT). Based on a hierarchical transformer structure and convolutional layers with spatial/spectral attention modules, the proposed deep learning framework, called Crop-Net, was designed. Time-series Sentinel-1 SAR data were used to evaluate the performance of the proposed model. Sample datasets were also collected by field survey in ten classes including non-crop classes (i.e. water, built-up and barren) and agricultural crop classes (i.e. arboretum, alfalfa, agricultural-vegetable, broad-bean, barley, canola and wheat). The effectiveness of the Crop-Net model was compared with other advanced machine learning and deep learning frameworks. The proposed Crop-Net model is shown to outperform other models through numerical analysis and visual interpretation of crop classification results. It provides accuracy of more than 98.6 (%) and 0.983 in terms of overall accuracy and kappa coefficient, respectively." @default.
- W4367050208 created "2023-04-27" @default.
- W4367050208 creator A5003591539 @default.
- W4367050208 creator A5014637550 @default.
- W4367050208 creator A5018156889 @default.
- W4367050208 date "2023-04-26" @default.
- W4367050208 modified "2023-10-01" @default.
- W4367050208 title "Crop-Net: A Novel Deep Learning Framework for Crop Classification using Time-series Sentinel-1 Imagery by Google Earth Engine" @default.
- W4367050208 cites W2517322176 @default.
- W4367050208 cites W2604086375 @default.
- W4367050208 cites W2610947800 @default.
- W4367050208 cites W2783608381 @default.
- W4367050208 cites W2912813928 @default.
- W4367050208 cites W2975918238 @default.
- W4367050208 cites W2986339177 @default.
- W4367050208 cites W2999712229 @default.
- W4367050208 cites W3000309135 @default.
- W4367050208 cites W3036312833 @default.
- W4367050208 cites W3088604489 @default.
- W4367050208 cites W3114830334 @default.
- W4367050208 cites W3163231391 @default.
- W4367050208 cites W3185809275 @default.
- W4367050208 cites W4200503226 @default.
- W4367050208 cites W4206994619 @default.
- W4367050208 cites W4213430843 @default.
- W4367050208 cites W4220839635 @default.
- W4367050208 cites W4280491056 @default.
- W4367050208 cites W4281553671 @default.
- W4367050208 cites W4283589436 @default.
- W4367050208 cites W4286493286 @default.
- W4367050208 cites W4311521180 @default.
- W4367050208 cites W4312109376 @default.
- W4367050208 cites W4313419944 @default.
- W4367050208 cites W4313886894 @default.
- W4367050208 cites W4318041127 @default.
- W4367050208 cites W4319923785 @default.
- W4367050208 cites W4321376170 @default.
- W4367050208 cites W4323570006 @default.
- W4367050208 cites W4361199083 @default.
- W4367050208 doi "https://doi.org/10.21203/rs.3.rs-2842001/v1" @default.
- W4367050208 hasPublicationYear "2023" @default.
- W4367050208 type Work @default.
- W4367050208 citedByCount "0" @default.
- W4367050208 crossrefType "posted-content" @default.
- W4367050208 hasAuthorship W4367050208A5003591539 @default.
- W4367050208 hasAuthorship W4367050208A5014637550 @default.
- W4367050208 hasAuthorship W4367050208A5018156889 @default.
- W4367050208 hasBestOaLocation W43670502081 @default.
- W4367050208 hasConcept C108583219 @default.
- W4367050208 hasConcept C119857082 @default.
- W4367050208 hasConcept C124101348 @default.
- W4367050208 hasConcept C127413603 @default.
- W4367050208 hasConcept C153180895 @default.
- W4367050208 hasConcept C154945302 @default.
- W4367050208 hasConcept C205649164 @default.
- W4367050208 hasConcept C41008148 @default.
- W4367050208 hasConcept C50644808 @default.
- W4367050208 hasConcept C62649853 @default.
- W4367050208 hasConcept C81363708 @default.
- W4367050208 hasConcept C88463610 @default.
- W4367050208 hasConceptScore W4367050208C108583219 @default.
- W4367050208 hasConceptScore W4367050208C119857082 @default.
- W4367050208 hasConceptScore W4367050208C124101348 @default.
- W4367050208 hasConceptScore W4367050208C127413603 @default.
- W4367050208 hasConceptScore W4367050208C153180895 @default.
- W4367050208 hasConceptScore W4367050208C154945302 @default.
- W4367050208 hasConceptScore W4367050208C205649164 @default.
- W4367050208 hasConceptScore W4367050208C41008148 @default.
- W4367050208 hasConceptScore W4367050208C50644808 @default.
- W4367050208 hasConceptScore W4367050208C62649853 @default.
- W4367050208 hasConceptScore W4367050208C81363708 @default.
- W4367050208 hasConceptScore W4367050208C88463610 @default.
- W4367050208 hasLocation W43670502081 @default.
- W4367050208 hasOpenAccess W4367050208 @default.
- W4367050208 hasPrimaryLocation W43670502081 @default.
- W4367050208 hasRelatedWork W2337926734 @default.
- W4367050208 hasRelatedWork W2732542196 @default.
- W4367050208 hasRelatedWork W2738221750 @default.
- W4367050208 hasRelatedWork W3156786002 @default.
- W4367050208 hasRelatedWork W4311257506 @default.
- W4367050208 hasRelatedWork W4312417841 @default.
- W4367050208 hasRelatedWork W4320802194 @default.
- W4367050208 hasRelatedWork W4321369474 @default.
- W4367050208 hasRelatedWork W4366224123 @default.
- W4367050208 hasRelatedWork W564581980 @default.
- W4367050208 isParatext "false" @default.
- W4367050208 isRetracted "false" @default.
- W4367050208 workType "article" @default.