Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367051772> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4367051772 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Statistical methods, particularly machine learning models, have gained significant popularity in air quality predictions. These prediction models are trained using the historical measurement datasets independently collected at the environmental monitoring stations, and their operational forecasts onward by the inputs of the real-time ambient pollutant observations. Therefore, these high-quality machine learning models only provide site-available predictions. In contrast, deterministic chemical transport models (CTM), which simulate the full life cycles of air pollutants, provide forecasts that are continuous in 3D field. However, owing to the complex error sources due to the emission, transport, and removal of pollutants, CTM forecasts are typically biased particularly in fine scale. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our recent regional-feature-selection machine learning prediction (RFSML v1.0) and a CTM forecast. The prediction fusion was conducted using the Bayesian theory-based ensemble Kalman filter (EnKF). Background error covariance was an essential part in the assimilation process. Ensemble CTM predictions driven by the perturbed emission inventories were initially used for representing their spatial covariance statistics, which could resolve the main part of the CTM error. In addition, a covariance inflation algorithm was designed to amplify the ensemble perturbations to account for other model errors next to the uncertainty in emission inputs. Model evaluation tests were conducted based on independent measurements. Our EnKF-based prediction fusion presented significant improvements than the pure CTM. Moreover, covariance inflation further enhanced the fused prediction particularly in the cases of severe underestimation." @default.
- W4367051772 created "2023-04-27" @default.
- W4367051772 creator A5067537660 @default.
- W4367051772 date "2023-04-26" @default.
- W4367051772 modified "2023-09-30" @default.
- W4367051772 title "Reply on RC2" @default.
- W4367051772 doi "https://doi.org/10.5194/gmd-2022-301-ac2" @default.
- W4367051772 hasPublicationYear "2023" @default.
- W4367051772 type Work @default.
- W4367051772 citedByCount "0" @default.
- W4367051772 crossrefType "peer-review" @default.
- W4367051772 hasAuthorship W4367051772A5067537660 @default.
- W4367051772 hasBestOaLocation W43670517721 @default.
- W4367051772 hasConcept C105795698 @default.
- W4367051772 hasConcept C119857082 @default.
- W4367051772 hasConcept C119898033 @default.
- W4367051772 hasConcept C153294291 @default.
- W4367051772 hasConcept C154945302 @default.
- W4367051772 hasConcept C157286648 @default.
- W4367051772 hasConcept C170061395 @default.
- W4367051772 hasConcept C178650346 @default.
- W4367051772 hasConcept C205649164 @default.
- W4367051772 hasConcept C206833254 @default.
- W4367051772 hasConcept C24552861 @default.
- W4367051772 hasConcept C33923547 @default.
- W4367051772 hasConcept C39432304 @default.
- W4367051772 hasConcept C41008148 @default.
- W4367051772 hasConcept C45942800 @default.
- W4367051772 hasConcept C79334102 @default.
- W4367051772 hasConceptScore W4367051772C105795698 @default.
- W4367051772 hasConceptScore W4367051772C119857082 @default.
- W4367051772 hasConceptScore W4367051772C119898033 @default.
- W4367051772 hasConceptScore W4367051772C153294291 @default.
- W4367051772 hasConceptScore W4367051772C154945302 @default.
- W4367051772 hasConceptScore W4367051772C157286648 @default.
- W4367051772 hasConceptScore W4367051772C170061395 @default.
- W4367051772 hasConceptScore W4367051772C178650346 @default.
- W4367051772 hasConceptScore W4367051772C205649164 @default.
- W4367051772 hasConceptScore W4367051772C206833254 @default.
- W4367051772 hasConceptScore W4367051772C24552861 @default.
- W4367051772 hasConceptScore W4367051772C33923547 @default.
- W4367051772 hasConceptScore W4367051772C39432304 @default.
- W4367051772 hasConceptScore W4367051772C41008148 @default.
- W4367051772 hasConceptScore W4367051772C45942800 @default.
- W4367051772 hasConceptScore W4367051772C79334102 @default.
- W4367051772 hasLocation W43670517721 @default.
- W4367051772 hasOpenAccess W4367051772 @default.
- W4367051772 hasPrimaryLocation W43670517721 @default.
- W4367051772 hasRelatedWork W1913800847 @default.
- W4367051772 hasRelatedWork W1965898538 @default.
- W4367051772 hasRelatedWork W2101981609 @default.
- W4367051772 hasRelatedWork W2160343576 @default.
- W4367051772 hasRelatedWork W2386891525 @default.
- W4367051772 hasRelatedWork W2408210013 @default.
- W4367051772 hasRelatedWork W2554030136 @default.
- W4367051772 hasRelatedWork W2592766532 @default.
- W4367051772 hasRelatedWork W3015434310 @default.
- W4367051772 hasRelatedWork W3137064266 @default.
- W4367051772 isParatext "false" @default.
- W4367051772 isRetracted "false" @default.
- W4367051772 workType "peer-review" @default.