Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367052419> ?p ?o ?g. }
- W4367052419 endingPage "982" @default.
- W4367052419 startingPage "982" @default.
- W4367052419 abstract "Causal inference is a fundamental research topic for discovering the cause–effect relationships in many disciplines. Inferring causality means identifying asymmetric relations between two variables. In real-world systems, e.g., finance, healthcare, and industrial processes, time series data from sensors and other data sources offer an especially good basis to infer causal relationships. Therefore, many different time series causal inference algorithms have been proposed in recent years. However, not all algorithms are equally well-suited for a given dataset. For instance, some approaches may only be able to identify linear relationships, while others are applicable for non-linearities. Algorithms further vary in their sensitivity to noise and their ability to infer causal information from coupled vs. non-coupled time series. As a consequence, different algorithms often generate different causal relationships for the same input. In order to achieve a more robust causal inference result, this publication proposes a novel data-driven two-phase multi-split causal ensemble model to combine the strengths of different causality base algorithms. In comparison to existing approaches, the proposed ensemble method reduces the influence of noise through a data partitioning scheme in a first phase. To achieve this, the data are initially divided into several partitions and the base causal inference algorithms are applied to each partition. Subsequently, Gaussian mixture models are used to identify the causal relationships derived from the different partitions that are likely to be valid. In the second phase, the identified relationships from each base algorithm are then merged based on three combination rules. The proposed ensemble approach is evaluated using multiple metrics, among them a newly developed evaluation index for causal ensemble approaches. We perform experiments using three synthetic datasets with different volumes and complexity, which have been specifically designed to test causality detection methods under different circumstances while knowing the ground truth causal relationships. In these experiments, our causality ensemble outperforms each of its base algorithms. In practical applications, the use of the proposed method could hence lead to more robust and reliable causality results." @default.
- W4367052419 created "2023-04-27" @default.
- W4367052419 creator A5018196105 @default.
- W4367052419 creator A5019111293 @default.
- W4367052419 creator A5019787331 @default.
- W4367052419 creator A5020907182 @default.
- W4367052419 creator A5046766462 @default.
- W4367052419 creator A5071058373 @default.
- W4367052419 date "2023-04-26" @default.
- W4367052419 modified "2023-09-26" @default.
- W4367052419 title "A Data-Driven Two-Phase Multi-Split Causal Ensemble Model for Time Series" @default.
- W4367052419 cites W1606939377 @default.
- W4367052419 cites W1607114662 @default.
- W4367052419 cites W1752598806 @default.
- W4367052419 cites W1975062332 @default.
- W4367052419 cites W2004359918 @default.
- W4367052419 cites W2024472792 @default.
- W4367052419 cites W2025836487 @default.
- W4367052419 cites W2053333206 @default.
- W4367052419 cites W2055600430 @default.
- W4367052419 cites W2083278075 @default.
- W4367052419 cites W2092939357 @default.
- W4367052419 cites W2100805904 @default.
- W4367052419 cites W2123092416 @default.
- W4367052419 cites W2146126871 @default.
- W4367052419 cites W2178225550 @default.
- W4367052419 cites W2240661524 @default.
- W4367052419 cites W2332930940 @default.
- W4367052419 cites W2891506233 @default.
- W4367052419 cites W2899399085 @default.
- W4367052419 cites W2913272944 @default.
- W4367052419 cites W2914546685 @default.
- W4367052419 cites W2923906793 @default.
- W4367052419 cites W2934083361 @default.
- W4367052419 cites W3034714689 @default.
- W4367052419 cites W3099844968 @default.
- W4367052419 cites W3101150805 @default.
- W4367052419 cites W3112591652 @default.
- W4367052419 cites W3195031553 @default.
- W4367052419 cites W4220872477 @default.
- W4367052419 cites W4249066653 @default.
- W4367052419 cites W4302423442 @default.
- W4367052419 doi "https://doi.org/10.3390/sym15050982" @default.
- W4367052419 hasPublicationYear "2023" @default.
- W4367052419 type Work @default.
- W4367052419 citedByCount "1" @default.
- W4367052419 countsByYear W43670524192023 @default.
- W4367052419 crossrefType "journal-article" @default.
- W4367052419 hasAuthorship W4367052419A5018196105 @default.
- W4367052419 hasAuthorship W4367052419A5019111293 @default.
- W4367052419 hasAuthorship W4367052419A5019787331 @default.
- W4367052419 hasAuthorship W4367052419A5020907182 @default.
- W4367052419 hasAuthorship W4367052419A5046766462 @default.
- W4367052419 hasAuthorship W4367052419A5071058373 @default.
- W4367052419 hasBestOaLocation W43670524191 @default.
- W4367052419 hasConcept C105795698 @default.
- W4367052419 hasConcept C11413529 @default.
- W4367052419 hasConcept C11671645 @default.
- W4367052419 hasConcept C119857082 @default.
- W4367052419 hasConcept C121332964 @default.
- W4367052419 hasConcept C124101348 @default.
- W4367052419 hasConcept C143724316 @default.
- W4367052419 hasConcept C149782125 @default.
- W4367052419 hasConcept C151406439 @default.
- W4367052419 hasConcept C151730666 @default.
- W4367052419 hasConcept C154945302 @default.
- W4367052419 hasConcept C158600405 @default.
- W4367052419 hasConcept C163504300 @default.
- W4367052419 hasConcept C2776214188 @default.
- W4367052419 hasConcept C33923547 @default.
- W4367052419 hasConcept C41008148 @default.
- W4367052419 hasConcept C62520636 @default.
- W4367052419 hasConcept C64357122 @default.
- W4367052419 hasConcept C86803240 @default.
- W4367052419 hasConceptScore W4367052419C105795698 @default.
- W4367052419 hasConceptScore W4367052419C11413529 @default.
- W4367052419 hasConceptScore W4367052419C11671645 @default.
- W4367052419 hasConceptScore W4367052419C119857082 @default.
- W4367052419 hasConceptScore W4367052419C121332964 @default.
- W4367052419 hasConceptScore W4367052419C124101348 @default.
- W4367052419 hasConceptScore W4367052419C143724316 @default.
- W4367052419 hasConceptScore W4367052419C149782125 @default.
- W4367052419 hasConceptScore W4367052419C151406439 @default.
- W4367052419 hasConceptScore W4367052419C151730666 @default.
- W4367052419 hasConceptScore W4367052419C154945302 @default.
- W4367052419 hasConceptScore W4367052419C158600405 @default.
- W4367052419 hasConceptScore W4367052419C163504300 @default.
- W4367052419 hasConceptScore W4367052419C2776214188 @default.
- W4367052419 hasConceptScore W4367052419C33923547 @default.
- W4367052419 hasConceptScore W4367052419C41008148 @default.
- W4367052419 hasConceptScore W4367052419C62520636 @default.
- W4367052419 hasConceptScore W4367052419C64357122 @default.
- W4367052419 hasConceptScore W4367052419C86803240 @default.
- W4367052419 hasFunder F4320320879 @default.
- W4367052419 hasIssue "5" @default.
- W4367052419 hasLocation W43670524191 @default.
- W4367052419 hasLocation W43670524192 @default.
- W4367052419 hasLocation W43670524193 @default.