Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367056742> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4367056742 endingPage "108276" @default.
- W4367056742 startingPage "108276" @default.
- W4367056742 abstract "The objective of this study is to develop an optimization approach for performance prediction in the water industry by integrating feature selection (FS), machine learning and genetic algorithms (GAs). To select the best set of input variables, FS methods such as Pearson correlation coefficient (PCC), principal component analysis (PCA), and GAs were employed. Next, a GA method was used to optimize the hyperparameters and the architecture of a deep learning network. The methodology was tested using bi-directional long-short term memory networks for univariate prediction of effluent quality and biogas production. The results demonstrate that FS methods are not universal and depend on the desired goal. Additionally, optimized machine learning applications to wastewater process data may require a shallow hidden architecture consisting of two hidden layers with an average of 25 total neurons, resulting in models that are more computationally efficient and interpretable. This proposed methodology has a wide range of applications, including predictive big data analytics, optimal data-driven development of soft-sensors, multi-objective optimization, and model predictive controllers." @default.
- W4367056742 created "2023-04-27" @default.
- W4367056742 creator A5029134029 @default.
- W4367056742 creator A5045454407 @default.
- W4367056742 date "2023-07-01" @default.
- W4367056742 modified "2023-09-27" @default.
- W4367056742 title "Optimization of deep learning models for forecasting performance in the water industry using genetic algorithms" @default.
- W4367056742 cites W1802426388 @default.
- W4367056742 cites W1987739446 @default.
- W4367056742 cites W2000651380 @default.
- W4367056742 cites W2049125224 @default.
- W4367056742 cites W2064954710 @default.
- W4367056742 cites W2077011856 @default.
- W4367056742 cites W2138505915 @default.
- W4367056742 cites W2305299511 @default.
- W4367056742 cites W2346412158 @default.
- W4367056742 cites W2593004578 @default.
- W4367056742 cites W2771100845 @default.
- W4367056742 cites W2809317444 @default.
- W4367056742 cites W2825946107 @default.
- W4367056742 cites W2911627187 @default.
- W4367056742 cites W2912689385 @default.
- W4367056742 cites W2957524790 @default.
- W4367056742 cites W2958150439 @default.
- W4367056742 cites W2984074761 @default.
- W4367056742 cites W2986617680 @default.
- W4367056742 cites W3003626942 @default.
- W4367056742 cites W3014859875 @default.
- W4367056742 cites W3020582323 @default.
- W4367056742 cites W3034491765 @default.
- W4367056742 cites W3036313208 @default.
- W4367056742 cites W3093007897 @default.
- W4367056742 cites W3140569390 @default.
- W4367056742 cites W3156194837 @default.
- W4367056742 cites W3164578835 @default.
- W4367056742 doi "https://doi.org/10.1016/j.compchemeng.2023.108276" @default.
- W4367056742 hasPublicationYear "2023" @default.
- W4367056742 type Work @default.
- W4367056742 citedByCount "1" @default.
- W4367056742 countsByYear W43670567422023 @default.
- W4367056742 crossrefType "journal-article" @default.
- W4367056742 hasAuthorship W4367056742A5029134029 @default.
- W4367056742 hasAuthorship W4367056742A5045454407 @default.
- W4367056742 hasConcept C119857082 @default.
- W4367056742 hasConcept C124101348 @default.
- W4367056742 hasConcept C154945302 @default.
- W4367056742 hasConcept C161584116 @default.
- W4367056742 hasConcept C199163554 @default.
- W4367056742 hasConcept C27438332 @default.
- W4367056742 hasConcept C41008148 @default.
- W4367056742 hasConcept C50644808 @default.
- W4367056742 hasConcept C8642999 @default.
- W4367056742 hasConcept C8880873 @default.
- W4367056742 hasConceptScore W4367056742C119857082 @default.
- W4367056742 hasConceptScore W4367056742C124101348 @default.
- W4367056742 hasConceptScore W4367056742C154945302 @default.
- W4367056742 hasConceptScore W4367056742C161584116 @default.
- W4367056742 hasConceptScore W4367056742C199163554 @default.
- W4367056742 hasConceptScore W4367056742C27438332 @default.
- W4367056742 hasConceptScore W4367056742C41008148 @default.
- W4367056742 hasConceptScore W4367056742C50644808 @default.
- W4367056742 hasConceptScore W4367056742C8642999 @default.
- W4367056742 hasConceptScore W4367056742C8880873 @default.
- W4367056742 hasLocation W43670567421 @default.
- W4367056742 hasOpenAccess W4367056742 @default.
- W4367056742 hasPrimaryLocation W43670567421 @default.
- W4367056742 hasRelatedWork W3013823630 @default.
- W4367056742 hasRelatedWork W3014815208 @default.
- W4367056742 hasRelatedWork W3125892556 @default.
- W4367056742 hasRelatedWork W3199608561 @default.
- W4367056742 hasRelatedWork W4210794429 @default.
- W4367056742 hasRelatedWork W4223456145 @default.
- W4367056742 hasRelatedWork W4283697347 @default.
- W4367056742 hasRelatedWork W4295309597 @default.
- W4367056742 hasRelatedWork W4295681619 @default.
- W4367056742 hasRelatedWork W4309113015 @default.
- W4367056742 hasVolume "175" @default.
- W4367056742 isParatext "false" @default.
- W4367056742 isRetracted "false" @default.
- W4367056742 workType "article" @default.