Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367058178> ?p ?o ?g. }
- W4367058178 endingPage "114960" @default.
- W4367058178 startingPage "114960" @default.
- W4367058178 abstract "Ozone (O3) pollution in the atmosphere is getting worse in many cities. In order to improve the accuracy of O3 prediction and obtain the spatial distribution of O3 concentration over a continuous period of time, this paper proposes a VAR-XGBoost model based on Vector autoregression (VAR), Kriging method and XGBoost (Extreme Gradient Boosting). China is used as an example and its spatial distribution of O3 is simulated. In this paper, the O3 concentration data of the monitoring sites in China are obtained, and then a spatial prediction method of O3 mass concentration based on the VAR-XGBoost model is established, and finnally its influencing factors are analyzed. This paper concludes that O3 features the highest correlation with PM2.5 and the lowest correlation with SO2. Among the measurement factors, wind speed and temperature are the most important factors affecting O3 pollution, which are positively correlated to O3 pollution. In addition, precipitation is negatively correlated with 8-hour ozone concentration. In this paper, the performance of the VAR-XGBoost model is evaluated based on the ten-fold cross-validation method of sample, site and time, and a comparison with the results of XGBoost, CatBoost (categorical boosting), ExtraTrees, GBDT (gradient boosting decision tree), AdaBoost (adaptive boosting), RF (random forest), Decision tree, and LightGBM (light gradient boosting machine) models is conducted. The result shows that the prediction accuracy of the VAR-XGBoost model is better than other models. The seasonal and annual average R2 reaches 0.94 (spring), 0.93 (summer), 0.92 (autumn), 0.93 (winter), and 0.95 (average from 2016 to 2021). The data show that the applicability of the VAR-XGBoost model in simulating the spatial distribution of O3 concentrations in China performs well. The spatial distribution of O3 concentrations in the Chinese region shows an obvious feature of high in the east and low in the west, and the spatial distribution is strongly influenced by topographical factors. The mean concentration is clearly low in winter and high in summer within a season. The results of this study can provide a scientific basis for the prevention and control of regional O3 pollution in China, and can also provide new ideas for the acquisition of data on the spatial distribution of O3 concentrations within cities." @default.
- W4367058178 created "2023-04-27" @default.
- W4367058178 creator A5021800924 @default.
- W4367058178 creator A5031146471 @default.
- W4367058178 creator A5065039074 @default.
- W4367058178 creator A5067221645 @default.
- W4367058178 date "2023-06-01" @default.
- W4367058178 modified "2023-10-05" @default.
- W4367058178 title "VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China" @default.
- W4367058178 cites W2019459021 @default.
- W4367058178 cites W2057829983 @default.
- W4367058178 cites W2566076471 @default.
- W4367058178 cites W2767085346 @default.
- W4367058178 cites W2898639483 @default.
- W4367058178 cites W2913711732 @default.
- W4367058178 cites W2975878129 @default.
- W4367058178 cites W2996845349 @default.
- W4367058178 cites W3009252385 @default.
- W4367058178 cites W3037226097 @default.
- W4367058178 cites W3049609829 @default.
- W4367058178 cites W3119987766 @default.
- W4367058178 cites W3127271977 @default.
- W4367058178 cites W3128072837 @default.
- W4367058178 cites W3185806655 @default.
- W4367058178 cites W3208076267 @default.
- W4367058178 cites W3209852694 @default.
- W4367058178 cites W3212499293 @default.
- W4367058178 cites W3214865316 @default.
- W4367058178 cites W4206060259 @default.
- W4367058178 cites W4210347153 @default.
- W4367058178 cites W4226133775 @default.
- W4367058178 cites W4228999430 @default.
- W4367058178 cites W4229072311 @default.
- W4367058178 cites W4280524361 @default.
- W4367058178 cites W4287448608 @default.
- W4367058178 cites W4289130666 @default.
- W4367058178 cites W4292424984 @default.
- W4367058178 cites W4297537398 @default.
- W4367058178 cites W4307656628 @default.
- W4367058178 cites W4308281029 @default.
- W4367058178 cites W4309338752 @default.
- W4367058178 cites W4312204569 @default.
- W4367058178 cites W4313407500 @default.
- W4367058178 doi "https://doi.org/10.1016/j.ecoenv.2023.114960" @default.
- W4367058178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37116452" @default.
- W4367058178 hasPublicationYear "2023" @default.
- W4367058178 type Work @default.
- W4367058178 citedByCount "16" @default.
- W4367058178 countsByYear W43670581782023 @default.
- W4367058178 crossrefType "journal-article" @default.
- W4367058178 hasAuthorship W4367058178A5021800924 @default.
- W4367058178 hasAuthorship W4367058178A5031146471 @default.
- W4367058178 hasAuthorship W4367058178A5065039074 @default.
- W4367058178 hasAuthorship W4367058178A5067221645 @default.
- W4367058178 hasBestOaLocation W43670581781 @default.
- W4367058178 hasConcept C105795698 @default.
- W4367058178 hasConcept C12267149 @default.
- W4367058178 hasConcept C133029050 @default.
- W4367058178 hasConcept C141404830 @default.
- W4367058178 hasConcept C154945302 @default.
- W4367058178 hasConcept C169258074 @default.
- W4367058178 hasConcept C33923547 @default.
- W4367058178 hasConcept C39432304 @default.
- W4367058178 hasConcept C41008148 @default.
- W4367058178 hasConcept C46686674 @default.
- W4367058178 hasConcept C5274069 @default.
- W4367058178 hasConcept C70153297 @default.
- W4367058178 hasConcept C84525736 @default.
- W4367058178 hasConceptScore W4367058178C105795698 @default.
- W4367058178 hasConceptScore W4367058178C12267149 @default.
- W4367058178 hasConceptScore W4367058178C133029050 @default.
- W4367058178 hasConceptScore W4367058178C141404830 @default.
- W4367058178 hasConceptScore W4367058178C154945302 @default.
- W4367058178 hasConceptScore W4367058178C169258074 @default.
- W4367058178 hasConceptScore W4367058178C33923547 @default.
- W4367058178 hasConceptScore W4367058178C39432304 @default.
- W4367058178 hasConceptScore W4367058178C41008148 @default.
- W4367058178 hasConceptScore W4367058178C46686674 @default.
- W4367058178 hasConceptScore W4367058178C5274069 @default.
- W4367058178 hasConceptScore W4367058178C70153297 @default.
- W4367058178 hasConceptScore W4367058178C84525736 @default.
- W4367058178 hasLocation W43670581781 @default.
- W4367058178 hasLocation W43670581782 @default.
- W4367058178 hasOpenAccess W4367058178 @default.
- W4367058178 hasPrimaryLocation W43670581781 @default.
- W4367058178 hasRelatedWork W2320316938 @default.
- W4367058178 hasRelatedWork W2561438160 @default.
- W4367058178 hasRelatedWork W3100297620 @default.
- W4367058178 hasRelatedWork W3107479743 @default.
- W4367058178 hasRelatedWork W3198811569 @default.
- W4367058178 hasRelatedWork W4246172529 @default.
- W4367058178 hasRelatedWork W4296081764 @default.
- W4367058178 hasRelatedWork W4298012357 @default.
- W4367058178 hasRelatedWork W4312292931 @default.
- W4367058178 hasRelatedWork W4365788189 @default.
- W4367058178 hasVolume "257" @default.
- W4367058178 isParatext "false" @default.
- W4367058178 isRetracted "false" @default.