Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367146564> ?p ?o ?g. }
- W4367146564 endingPage "1536" @default.
- W4367146564 startingPage "1528" @default.
- W4367146564 abstract "Depression is a prevalent and severe mental disorder that often goes undetected and untreated, particularly in its early stages. However, social media has emerged as a valuable resource for identifying symptoms of depression and other mental disorders as people are increasingly willing to share their experiences and emotions online. As such, social media-based depression detection has become an important area of research. Unfortunately, despite the growing number of cases in China, there are few Chinese social media-based resources for depression research. To address this gap, this article presents a dataset collected from Sina Weibo and approaches depression detection as a binary classification problem. A depression lexicon is developed based on domain knowledge of depression and the Dalian University of Technology Sentiment Lexicon (DUT-SL), which facilitates better extraction of lexical features related to depression. Then the lexical features are fused using a correlation-based metric. The effectiveness of this approach is verified using five classical machine learning methods and two boosting-based models, both on a public dataset and our dataset. Experimental results indicate that the depression domain lexicon features improve classification performance and fusing these features based on their correlations can further enhance prediction effectiveness. This study provides a method for future research in social media-based depression detection and contributes to the development of Chinese depression detection resources." @default.
- W4367146564 created "2023-04-28" @default.
- W4367146564 creator A5001013736 @default.
- W4367146564 creator A5023248223 @default.
- W4367146564 creator A5050926498 @default.
- W4367146564 creator A5054839125 @default.
- W4367146564 creator A5064418667 @default.
- W4367146564 date "2023-08-01" @default.
- W4367146564 modified "2023-10-17" @default.
- W4367146564 title "Leveraging Domain Knowledge to Improve Depression Detection on Chinese Social Media" @default.
- W4367146564 cites W1875028359 @default.
- W4367146564 cites W1982498087 @default.
- W4367146564 cites W2030894524 @default.
- W4367146564 cites W2067495470 @default.
- W4367146564 cites W2112778345 @default.
- W4367146564 cites W2250240141 @default.
- W4367146564 cites W2528215262 @default.
- W4367146564 cites W2578018054 @default.
- W4367146564 cites W2620791176 @default.
- W4367146564 cites W2740966010 @default.
- W4367146564 cites W2795715081 @default.
- W4367146564 cites W2797407512 @default.
- W4367146564 cites W2801113291 @default.
- W4367146564 cites W2883774277 @default.
- W4367146564 cites W2911378332 @default.
- W4367146564 cites W2962848499 @default.
- W4367146564 cites W2966930013 @default.
- W4367146564 cites W2967182021 @default.
- W4367146564 cites W3016847450 @default.
- W4367146564 cites W3023846141 @default.
- W4367146564 cites W3028133604 @default.
- W4367146564 cites W3029777123 @default.
- W4367146564 cites W3058043232 @default.
- W4367146564 cites W3102476541 @default.
- W4367146564 cites W3108309206 @default.
- W4367146564 cites W3126398860 @default.
- W4367146564 cites W3154095814 @default.
- W4367146564 cites W3190686212 @default.
- W4367146564 cites W3201200719 @default.
- W4367146564 cites W3215748564 @default.
- W4367146564 cites W4229049385 @default.
- W4367146564 cites W4285223485 @default.
- W4367146564 cites W4309777556 @default.
- W4367146564 cites W4317212825 @default.
- W4367146564 cites W94368583 @default.
- W4367146564 doi "https://doi.org/10.1109/tcss.2023.3267183" @default.
- W4367146564 hasPublicationYear "2023" @default.
- W4367146564 type Work @default.
- W4367146564 citedByCount "0" @default.
- W4367146564 crossrefType "journal-article" @default.
- W4367146564 hasAuthorship W4367146564A5001013736 @default.
- W4367146564 hasAuthorship W4367146564A5023248223 @default.
- W4367146564 hasAuthorship W4367146564A5050926498 @default.
- W4367146564 hasAuthorship W4367146564A5054839125 @default.
- W4367146564 hasAuthorship W4367146564A5064418667 @default.
- W4367146564 hasConcept C119857082 @default.
- W4367146564 hasConcept C134306372 @default.
- W4367146564 hasConcept C136764020 @default.
- W4367146564 hasConcept C139719470 @default.
- W4367146564 hasConcept C154945302 @default.
- W4367146564 hasConcept C15744967 @default.
- W4367146564 hasConcept C162324750 @default.
- W4367146564 hasConcept C204321447 @default.
- W4367146564 hasConcept C2776867660 @default.
- W4367146564 hasConcept C2778121359 @default.
- W4367146564 hasConcept C33923547 @default.
- W4367146564 hasConcept C36503486 @default.
- W4367146564 hasConcept C41008148 @default.
- W4367146564 hasConcept C46686674 @default.
- W4367146564 hasConcept C518677369 @default.
- W4367146564 hasConceptScore W4367146564C119857082 @default.
- W4367146564 hasConceptScore W4367146564C134306372 @default.
- W4367146564 hasConceptScore W4367146564C136764020 @default.
- W4367146564 hasConceptScore W4367146564C139719470 @default.
- W4367146564 hasConceptScore W4367146564C154945302 @default.
- W4367146564 hasConceptScore W4367146564C15744967 @default.
- W4367146564 hasConceptScore W4367146564C162324750 @default.
- W4367146564 hasConceptScore W4367146564C204321447 @default.
- W4367146564 hasConceptScore W4367146564C2776867660 @default.
- W4367146564 hasConceptScore W4367146564C2778121359 @default.
- W4367146564 hasConceptScore W4367146564C33923547 @default.
- W4367146564 hasConceptScore W4367146564C36503486 @default.
- W4367146564 hasConceptScore W4367146564C41008148 @default.
- W4367146564 hasConceptScore W4367146564C46686674 @default.
- W4367146564 hasConceptScore W4367146564C518677369 @default.
- W4367146564 hasFunder F4320313889 @default.
- W4367146564 hasFunder F4320321001 @default.
- W4367146564 hasFunder F4320335777 @default.
- W4367146564 hasFunder F4320335787 @default.
- W4367146564 hasIssue "4" @default.
- W4367146564 hasLocation W43671465641 @default.
- W4367146564 hasOpenAccess W4367146564 @default.
- W4367146564 hasPrimaryLocation W43671465641 @default.
- W4367146564 hasRelatedWork W1987859285 @default.
- W4367146564 hasRelatedWork W1996541855 @default.
- W4367146564 hasRelatedWork W2060370854 @default.
- W4367146564 hasRelatedWork W2748952813 @default.
- W4367146564 hasRelatedWork W2899084033 @default.