Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367162883> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4367162883 endingPage "543" @default.
- W4367162883 startingPage "536" @default.
- W4367162883 abstract "Machine learning techniques deals with, among other things, pattern recognition in large amounts of data to identify trends and possible events in the future regarding a given topic of interest. Machine learning methods are useful for addressing challenges in and creating new benefits for organisations. This paper looks at how machine learning can contribute to manage projects effectively.
 Many organisations apply the concept of project. A part of them are purely project-based organisations, and a part of them carry out projects in addition to their mass-production activities and permanent operations. Within the realm of project management, this paper sets its focus on studying the role of machine learning in handling unexpected events and uncertainty in projects. One of the ways to deal with unexpected events and uncertainty is to capture early warning signs that can predict unexpected events.
 A major failure of projects can be seen as a combined effect of a series of small failures, negative results or problems that have occurred over a period of time. Project teams may not notice or just ignore early warning signs of these problems and choose to work further in the project. This could finally lead to a major failure, at which point no preventive actions could save the project from the major failure. Several researchers have researched on early warning signs and systems within the context of projects. Early warning signs can be seen as some kind of a pattern recognition from a pool of relevant data.
 This paper aims to answer the following two interrelated research questions: (1) What role does machine learning have in early warnings in projects? (2) How can machine learning contribute to effective project management (for example, handling uncertainty in projects)? This is a conceptual paper, based on literature study." @default.
- W4367162883 created "2023-04-28" @default.
- W4367162883 creator A5041304960 @default.
- W4367162883 creator A5044372740 @default.
- W4367162883 creator A5073236564 @default.
- W4367162883 date "2022-11-04" @default.
- W4367162883 modified "2023-09-27" @default.
- W4367162883 title "The Role of Machine Learning in Managing Uncertainty in Projects – A View on Early Warning Systems" @default.
- W4367162883 doi "https://doi.org/10.34190/ecmlg.18.1.932" @default.
- W4367162883 hasPublicationYear "2022" @default.
- W4367162883 type Work @default.
- W4367162883 citedByCount "0" @default.
- W4367162883 crossrefType "journal-article" @default.
- W4367162883 hasAuthorship W4367162883A5041304960 @default.
- W4367162883 hasAuthorship W4367162883A5044372740 @default.
- W4367162883 hasAuthorship W4367162883A5073236564 @default.
- W4367162883 hasBestOaLocation W43671628831 @default.
- W4367162883 hasConcept C112930515 @default.
- W4367162883 hasConcept C127413603 @default.
- W4367162883 hasConcept C144133560 @default.
- W4367162883 hasConcept C151730666 @default.
- W4367162883 hasConcept C154945302 @default.
- W4367162883 hasConcept C15952604 @default.
- W4367162883 hasConcept C17744445 @default.
- W4367162883 hasConcept C18762648 @default.
- W4367162883 hasConcept C195094911 @default.
- W4367162883 hasConcept C199539241 @default.
- W4367162883 hasConcept C201995342 @default.
- W4367162883 hasConcept C2522767166 @default.
- W4367162883 hasConcept C2524010 @default.
- W4367162883 hasConcept C2778757428 @default.
- W4367162883 hasConcept C2779343474 @default.
- W4367162883 hasConcept C2779913896 @default.
- W4367162883 hasConcept C28719098 @default.
- W4367162883 hasConcept C29825287 @default.
- W4367162883 hasConcept C33923547 @default.
- W4367162883 hasConcept C41008148 @default.
- W4367162883 hasConcept C56739046 @default.
- W4367162883 hasConcept C76155785 @default.
- W4367162883 hasConcept C78519656 @default.
- W4367162883 hasConcept C86803240 @default.
- W4367162883 hasConceptScore W4367162883C112930515 @default.
- W4367162883 hasConceptScore W4367162883C127413603 @default.
- W4367162883 hasConceptScore W4367162883C144133560 @default.
- W4367162883 hasConceptScore W4367162883C151730666 @default.
- W4367162883 hasConceptScore W4367162883C154945302 @default.
- W4367162883 hasConceptScore W4367162883C15952604 @default.
- W4367162883 hasConceptScore W4367162883C17744445 @default.
- W4367162883 hasConceptScore W4367162883C18762648 @default.
- W4367162883 hasConceptScore W4367162883C195094911 @default.
- W4367162883 hasConceptScore W4367162883C199539241 @default.
- W4367162883 hasConceptScore W4367162883C201995342 @default.
- W4367162883 hasConceptScore W4367162883C2522767166 @default.
- W4367162883 hasConceptScore W4367162883C2524010 @default.
- W4367162883 hasConceptScore W4367162883C2778757428 @default.
- W4367162883 hasConceptScore W4367162883C2779343474 @default.
- W4367162883 hasConceptScore W4367162883C2779913896 @default.
- W4367162883 hasConceptScore W4367162883C28719098 @default.
- W4367162883 hasConceptScore W4367162883C29825287 @default.
- W4367162883 hasConceptScore W4367162883C33923547 @default.
- W4367162883 hasConceptScore W4367162883C41008148 @default.
- W4367162883 hasConceptScore W4367162883C56739046 @default.
- W4367162883 hasConceptScore W4367162883C76155785 @default.
- W4367162883 hasConceptScore W4367162883C78519656 @default.
- W4367162883 hasConceptScore W4367162883C86803240 @default.
- W4367162883 hasIssue "1" @default.
- W4367162883 hasLocation W43671628831 @default.
- W4367162883 hasOpenAccess W4367162883 @default.
- W4367162883 hasPrimaryLocation W43671628831 @default.
- W4367162883 hasRelatedWork W125250676 @default.
- W4367162883 hasRelatedWork W1569388689 @default.
- W4367162883 hasRelatedWork W2151177948 @default.
- W4367162883 hasRelatedWork W2352586088 @default.
- W4367162883 hasRelatedWork W3107474891 @default.
- W4367162883 hasRelatedWork W4239755387 @default.
- W4367162883 hasRelatedWork W4239787928 @default.
- W4367162883 hasRelatedWork W4241624745 @default.
- W4367162883 hasRelatedWork W4248335945 @default.
- W4367162883 hasRelatedWork W655791221 @default.
- W4367162883 hasVolume "18" @default.
- W4367162883 isParatext "false" @default.
- W4367162883 isRetracted "false" @default.
- W4367162883 workType "article" @default.