Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367171938> ?p ?o ?g. }
- W4367171938 abstract "Activated sludge (AS) of wastewater treatment plants (WWTPs) is one of the world's largest artificial microbial ecosystems and the microbial community of the AS system is closely related to WWTPs' performance. However, how to predict its community structure is still unclear.Here, we used artificial neural networks (ANN) to predict the microbial compositions of AS systems collected from WWTPs located worldwide. The predictive accuracy R21:1 of the Shannon-Wiener index reached 60.42%, and the average R21:1 of amplicon sequence variants (ASVs) appearing in at least 10% of samples and core taxa were 35.09% and 42.99%, respectively. We also found that the predictability of ASVs was significantly positively correlated with their relative abundance and occurrence frequency, but significantly negatively correlated with potential migration rate. The typical functional groups such as nitrifiers, denitrifiers, polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), and filamentous organisms in AS systems could also be well recovered using ANN models, with R21:1 ranging from 32.62% to 56.81%. Furthermore, we found that whether industry wastewater source contained in inflow (IndConInf) had good predictive abilities, although its correlation with ASVs in the Mantel test analysis was weak, which suggested important factors that cannot be identified using traditional methods may be highlighted by the ANN model.We demonstrated that the microbial compositions and major functional groups of AS systems are predictable using our approach, and IndConInf has a significant impact on the prediction. Our results provide a better understanding of the factors affecting AS communities through the prediction of the microbial community of AS systems, which could lead to insights for improved operating parameters and control of community structure. Video Abstract." @default.
- W4367171938 created "2023-04-28" @default.
- W4367171938 creator A5041458743 @default.
- W4367171938 creator A5071925119 @default.
- W4367171938 creator A5084642040 @default.
- W4367171938 date "2023-04-28" @default.
- W4367171938 modified "2023-10-10" @default.
- W4367171938 title "Predicting microbial community compositions in wastewater treatment plants using artificial neural networks" @default.
- W4367171938 cites W1600863360 @default.
- W4367171938 cites W1845784301 @default.
- W4367171938 cites W1967714511 @default.
- W4367171938 cites W1967901188 @default.
- W4367171938 cites W1974742732 @default.
- W4367171938 cites W1980532238 @default.
- W4367171938 cites W1995332913 @default.
- W4367171938 cites W2043780327 @default.
- W4367171938 cites W2053479400 @default.
- W4367171938 cites W2062848325 @default.
- W4367171938 cites W2068381362 @default.
- W4367171938 cites W2070188654 @default.
- W4367171938 cites W2070826422 @default.
- W4367171938 cites W2071004726 @default.
- W4367171938 cites W2078180027 @default.
- W4367171938 cites W2091333662 @default.
- W4367171938 cites W2124570789 @default.
- W4367171938 cites W2129687578 @default.
- W4367171938 cites W2136660715 @default.
- W4367171938 cites W2137857684 @default.
- W4367171938 cites W2162368885 @default.
- W4367171938 cites W2176738266 @default.
- W4367171938 cites W2284025539 @default.
- W4367171938 cites W2290914818 @default.
- W4367171938 cites W2401404581 @default.
- W4367171938 cites W2481949923 @default.
- W4367171938 cites W2534045768 @default.
- W4367171938 cites W2549134242 @default.
- W4367171938 cites W2565339451 @default.
- W4367171938 cites W2568184332 @default.
- W4367171938 cites W2699096894 @default.
- W4367171938 cites W2709421839 @default.
- W4367171938 cites W2745884042 @default.
- W4367171938 cites W2791132559 @default.
- W4367171938 cites W2793348512 @default.
- W4367171938 cites W2885005993 @default.
- W4367171938 cites W2903517797 @default.
- W4367171938 cites W2940611314 @default.
- W4367171938 cites W2944548763 @default.
- W4367171938 cites W2944626965 @default.
- W4367171938 cites W2963276645 @default.
- W4367171938 cites W2966706853 @default.
- W4367171938 cites W2980208409 @default.
- W4367171938 cites W2981720759 @default.
- W4367171938 cites W2988824228 @default.
- W4367171938 cites W3000516729 @default.
- W4367171938 cites W3016491676 @default.
- W4367171938 cites W3030218091 @default.
- W4367171938 cites W3032601248 @default.
- W4367171938 cites W3092811517 @default.
- W4367171938 cites W3093587565 @default.
- W4367171938 cites W3117924797 @default.
- W4367171938 cites W3128110793 @default.
- W4367171938 cites W3141597806 @default.
- W4367171938 cites W3154720376 @default.
- W4367171938 cites W3198009659 @default.
- W4367171938 cites W3217069536 @default.
- W4367171938 cites W3217232417 @default.
- W4367171938 cites W3217713984 @default.
- W4367171938 cites W4220715684 @default.
- W4367171938 cites W4225700116 @default.
- W4367171938 doi "https://doi.org/10.1186/s40168-023-01519-9" @default.
- W4367171938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37106397" @default.
- W4367171938 hasPublicationYear "2023" @default.
- W4367171938 type Work @default.
- W4367171938 citedByCount "0" @default.
- W4367171938 crossrefType "journal-article" @default.
- W4367171938 hasAuthorship W4367171938A5041458743 @default.
- W4367171938 hasAuthorship W4367171938A5071925119 @default.
- W4367171938 hasAuthorship W4367171938A5084642040 @default.
- W4367171938 hasBestOaLocation W43671719381 @default.
- W4367171938 hasConcept C104317684 @default.
- W4367171938 hasConcept C122325731 @default.
- W4367171938 hasConcept C18903297 @default.
- W4367171938 hasConcept C19033989 @default.
- W4367171938 hasConcept C39432304 @default.
- W4367171938 hasConcept C523546767 @default.
- W4367171938 hasConcept C54355233 @default.
- W4367171938 hasConcept C55493867 @default.
- W4367171938 hasConcept C57442070 @default.
- W4367171938 hasConcept C68873052 @default.
- W4367171938 hasConcept C69562835 @default.
- W4367171938 hasConcept C77077793 @default.
- W4367171938 hasConcept C81407943 @default.
- W4367171938 hasConcept C86803240 @default.
- W4367171938 hasConcept C87717796 @default.
- W4367171938 hasConcept C94061648 @default.
- W4367171938 hasConceptScore W4367171938C104317684 @default.
- W4367171938 hasConceptScore W4367171938C122325731 @default.
- W4367171938 hasConceptScore W4367171938C18903297 @default.
- W4367171938 hasConceptScore W4367171938C19033989 @default.
- W4367171938 hasConceptScore W4367171938C39432304 @default.