Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367172644> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4367172644 abstract "Especially in recent years, deep learning algorithms have been used in several fields, including in health and biomedicine. Deep learning architectures, especially convolutional neural networks are powerful feature extractors for image-based recognition tasks such as fracture detection, tissue and organ division, disease detection, etc. Today, the detection of fractures in human bones has become a popular topic. However, since there are not many studies on this topic in veterinary medicine, there is a gap here in the literature. This study was conducted to contribute to the literature in the field of veterinary medicine. In the study, long bones in dogs are classified as broken or intact. The dataset used is one that’s newly presented to the literature. The dataset consists of X-ray images of long bones of dogs taken from Ankara Metropolitan Municipality Temporary Care Home for Street Animals. In this study, end-to-end and transfer learning methods were used. This study was conducted on the MATLAB platform and the highest success was achieved with the deep learning based Resnet50 network structure at 91.7% when the feature was extracted and classified with SVM." @default.
- W4367172644 created "2023-04-28" @default.
- W4367172644 creator A5025175501 @default.
- W4367172644 creator A5034079324 @default.
- W4367172644 creator A5037471769 @default.
- W4367172644 creator A5039091129 @default.
- W4367172644 date "2023-04-19" @default.
- W4367172644 modified "2023-09-30" @default.
- W4367172644 title "Detection of Fractures in Dogs’ Long Bones" @default.
- W4367172644 cites W1666859628 @default.
- W4367172644 cites W2097117768 @default.
- W4367172644 cites W2194775991 @default.
- W4367172644 cites W2310992461 @default.
- W4367172644 cites W2896924809 @default.
- W4367172644 cites W2897228760 @default.
- W4367172644 cites W2899835486 @default.
- W4367172644 cites W2963446712 @default.
- W4367172644 cites W2994429299 @default.
- W4367172644 cites W3037729095 @default.
- W4367172644 cites W3111341023 @default.
- W4367172644 cites W3113794370 @default.
- W4367172644 cites W3164454234 @default.
- W4367172644 cites W3192490766 @default.
- W4367172644 cites W4211116738 @default.
- W4367172644 cites W4225531241 @default.
- W4367172644 cites W4225977701 @default.
- W4367172644 cites W4229441564 @default.
- W4367172644 cites W4291511624 @default.
- W4367172644 cites W4307494488 @default.
- W4367172644 cites W4308441560 @default.
- W4367172644 doi "https://doi.org/10.1109/radioelektronika57919.2023.10109031" @default.
- W4367172644 hasPublicationYear "2023" @default.
- W4367172644 type Work @default.
- W4367172644 citedByCount "0" @default.
- W4367172644 crossrefType "proceedings-article" @default.
- W4367172644 hasAuthorship W4367172644A5025175501 @default.
- W4367172644 hasAuthorship W4367172644A5034079324 @default.
- W4367172644 hasAuthorship W4367172644A5037471769 @default.
- W4367172644 hasAuthorship W4367172644A5039091129 @default.
- W4367172644 hasConcept C108583219 @default.
- W4367172644 hasConcept C119857082 @default.
- W4367172644 hasConcept C12267149 @default.
- W4367172644 hasConcept C138885662 @default.
- W4367172644 hasConcept C142724271 @default.
- W4367172644 hasConcept C150899416 @default.
- W4367172644 hasConcept C153180895 @default.
- W4367172644 hasConcept C154945302 @default.
- W4367172644 hasConcept C158739034 @default.
- W4367172644 hasConcept C202444582 @default.
- W4367172644 hasConcept C2776401178 @default.
- W4367172644 hasConcept C33923547 @default.
- W4367172644 hasConcept C41008148 @default.
- W4367172644 hasConcept C41895202 @default.
- W4367172644 hasConcept C52622490 @default.
- W4367172644 hasConcept C71924100 @default.
- W4367172644 hasConcept C81363708 @default.
- W4367172644 hasConcept C9652623 @default.
- W4367172644 hasConceptScore W4367172644C108583219 @default.
- W4367172644 hasConceptScore W4367172644C119857082 @default.
- W4367172644 hasConceptScore W4367172644C12267149 @default.
- W4367172644 hasConceptScore W4367172644C138885662 @default.
- W4367172644 hasConceptScore W4367172644C142724271 @default.
- W4367172644 hasConceptScore W4367172644C150899416 @default.
- W4367172644 hasConceptScore W4367172644C153180895 @default.
- W4367172644 hasConceptScore W4367172644C154945302 @default.
- W4367172644 hasConceptScore W4367172644C158739034 @default.
- W4367172644 hasConceptScore W4367172644C202444582 @default.
- W4367172644 hasConceptScore W4367172644C2776401178 @default.
- W4367172644 hasConceptScore W4367172644C33923547 @default.
- W4367172644 hasConceptScore W4367172644C41008148 @default.
- W4367172644 hasConceptScore W4367172644C41895202 @default.
- W4367172644 hasConceptScore W4367172644C52622490 @default.
- W4367172644 hasConceptScore W4367172644C71924100 @default.
- W4367172644 hasConceptScore W4367172644C81363708 @default.
- W4367172644 hasConceptScore W4367172644C9652623 @default.
- W4367172644 hasLocation W43671726441 @default.
- W4367172644 hasOpenAccess W4367172644 @default.
- W4367172644 hasPrimaryLocation W43671726441 @default.
- W4367172644 hasRelatedWork W2732542196 @default.
- W4367172644 hasRelatedWork W2738221750 @default.
- W4367172644 hasRelatedWork W2800691917 @default.
- W4367172644 hasRelatedWork W2963958939 @default.
- W4367172644 hasRelatedWork W3091976719 @default.
- W4367172644 hasRelatedWork W3166467183 @default.
- W4367172644 hasRelatedWork W3173182854 @default.
- W4367172644 hasRelatedWork W3192840557 @default.
- W4367172644 hasRelatedWork W4287009405 @default.
- W4367172644 hasRelatedWork W4366224123 @default.
- W4367172644 isParatext "false" @default.
- W4367172644 isRetracted "false" @default.
- W4367172644 workType "article" @default.