Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367175064> ?p ?o ?g. }
- W4367175064 endingPage "171" @default.
- W4367175064 startingPage "156" @default.
- W4367175064 abstract "Although there is general consensus about the behavioural, clinical and sociodemographic variables that are risk factors for reoffending, optimal statistical modelling of these variables is less clear. Machine learning techniques offer an approach that may provide greater accuracy than traditional methods.To compare the performance of advanced machine learning techniques (classification trees and random forests) to logistic regression in classifying correlates of rearrest among adult probationers and parolees in the United States.Data were from the subgroup of people on probation or parole who had taken part in the National Survey on Drug Use and Health for the years 2015-2019. We compared the performance of logistic regression, classification trees and random forests, using receiver operating characteristic curves, to examine the correlates of arrest within the past 12 months.We found that machine learning techniques, specifically random forests, possessed significantly greater accuracy than logistic regression in classifying correlates of arrest.Our findings suggest the potential for enhanced risk classification. The next step would be to develop applications for criminal justice and clinical practice to inform better support and management strategies for former offenders in the community." @default.
- W4367175064 created "2023-04-28" @default.
- W4367175064 creator A5015112522 @default.
- W4367175064 creator A5018309228 @default.
- W4367175064 creator A5019929589 @default.
- W4367175064 creator A5042943814 @default.
- W4367175064 creator A5063705466 @default.
- W4367175064 creator A5085914044 @default.
- W4367175064 date "2023-04-26" @default.
- W4367175064 modified "2023-10-12" @default.
- W4367175064 title "Towards more accurate classification of risk of arrest among offenders on community supervision: An application of machine learning versus logistic regression" @default.
- W4367175064 cites W1978022285 @default.
- W4367175064 cites W1978810542 @default.
- W4367175064 cites W1996031526 @default.
- W4367175064 cites W2010997587 @default.
- W4367175064 cites W2042633560 @default.
- W4367175064 cites W2118417438 @default.
- W4367175064 cites W2121037728 @default.
- W4367175064 cites W2132083920 @default.
- W4367175064 cites W2135613165 @default.
- W4367175064 cites W2153375732 @default.
- W4367175064 cites W2161038912 @default.
- W4367175064 cites W2251584606 @default.
- W4367175064 cites W2264856678 @default.
- W4367175064 cites W2337553400 @default.
- W4367175064 cites W2340381878 @default.
- W4367175064 cites W2479075166 @default.
- W4367175064 cites W2599025709 @default.
- W4367175064 cites W2609836284 @default.
- W4367175064 cites W2625428279 @default.
- W4367175064 cites W2768337900 @default.
- W4367175064 cites W2775946131 @default.
- W4367175064 cites W2911892564 @default.
- W4367175064 cites W2911964244 @default.
- W4367175064 cites W2944580448 @default.
- W4367175064 cites W2950281301 @default.
- W4367175064 cites W2965929528 @default.
- W4367175064 cites W2974166822 @default.
- W4367175064 cites W3013273846 @default.
- W4367175064 cites W3015825143 @default.
- W4367175064 cites W3022497995 @default.
- W4367175064 cites W3042720219 @default.
- W4367175064 cites W3098524120 @default.
- W4367175064 cites W3126381852 @default.
- W4367175064 cites W3159032198 @default.
- W4367175064 cites W4244474052 @default.
- W4367175064 cites W4281619588 @default.
- W4367175064 cites W4283714350 @default.
- W4367175064 cites W4293104138 @default.
- W4367175064 cites W4301308134 @default.
- W4367175064 cites W596623478 @default.
- W4367175064 doi "https://doi.org/10.1002/cbm.2289" @default.
- W4367175064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37101327" @default.
- W4367175064 hasPublicationYear "2023" @default.
- W4367175064 type Work @default.
- W4367175064 citedByCount "1" @default.
- W4367175064 countsByYear W43671750642023 @default.
- W4367175064 crossrefType "journal-article" @default.
- W4367175064 hasAuthorship W4367175064A5015112522 @default.
- W4367175064 hasAuthorship W4367175064A5018309228 @default.
- W4367175064 hasAuthorship W4367175064A5019929589 @default.
- W4367175064 hasAuthorship W4367175064A5042943814 @default.
- W4367175064 hasAuthorship W4367175064A5063705466 @default.
- W4367175064 hasAuthorship W4367175064A5085914044 @default.
- W4367175064 hasConcept C105795698 @default.
- W4367175064 hasConcept C119857082 @default.
- W4367175064 hasConcept C151956035 @default.
- W4367175064 hasConcept C154945302 @default.
- W4367175064 hasConcept C15744967 @default.
- W4367175064 hasConcept C169258074 @default.
- W4367175064 hasConcept C33923547 @default.
- W4367175064 hasConcept C41008148 @default.
- W4367175064 hasConcept C58471807 @default.
- W4367175064 hasConcept C83546350 @default.
- W4367175064 hasConcept C84525736 @default.
- W4367175064 hasConceptScore W4367175064C105795698 @default.
- W4367175064 hasConceptScore W4367175064C119857082 @default.
- W4367175064 hasConceptScore W4367175064C151956035 @default.
- W4367175064 hasConceptScore W4367175064C154945302 @default.
- W4367175064 hasConceptScore W4367175064C15744967 @default.
- W4367175064 hasConceptScore W4367175064C169258074 @default.
- W4367175064 hasConceptScore W4367175064C33923547 @default.
- W4367175064 hasConceptScore W4367175064C41008148 @default.
- W4367175064 hasConceptScore W4367175064C58471807 @default.
- W4367175064 hasConceptScore W4367175064C83546350 @default.
- W4367175064 hasConceptScore W4367175064C84525736 @default.
- W4367175064 hasIssue "3" @default.
- W4367175064 hasLocation W43671750641 @default.
- W4367175064 hasLocation W43671750642 @default.
- W4367175064 hasOpenAccess W4367175064 @default.
- W4367175064 hasPrimaryLocation W43671750641 @default.
- W4367175064 hasRelatedWork W4308573183 @default.
- W4367175064 hasRelatedWork W4313289487 @default.
- W4367175064 hasRelatedWork W4317732970 @default.
- W4367175064 hasRelatedWork W4323294312 @default.
- W4367175064 hasRelatedWork W4366967560 @default.
- W4367175064 hasRelatedWork W4366990902 @default.
- W4367175064 hasRelatedWork W4367335937 @default.