Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367175065> ?p ?o ?g. }
- W4367175065 abstract "We introduce Gaussian Process Regression (GPR) as an enhanced method of thermodynamic extrapolation and interpolation. The heteroscedastic GPR models that we introduce automatically weight provided information by its estimated uncertainty, allowing for the incorporation of highly uncertain, high-order derivative information. By the linearity of the derivative operator, GPR models naturally handle derivative information and, with appropriate likelihood models that incorporate heterogeneous uncertainties, are able to identify estimates of functions for which the provided observations and derivatives are inconsistent due to the sampling bias that is common in molecular simulations. Since we utilize kernels that form complete bases on the function space to be learned, the estimated uncertainty in the model takes into account that of the functional form itself, in contrast to polynomial interpolation, which explicitly assumes the functional form to be fixed. We apply GPR models to a variety of data sources and assess various active learning strategies, identifying when specific options will be most useful. Our active-learning data collection based on GPR models incorporating derivative information is finally applied to tracing vapor-liquid equilibrium for a single-component Lennard-Jones fluid, which we show represents a powerful generalization to previous extrapolation strategies and Gibbs-Duhem integration. A suite of tools implementing these methods is provided at https://github.com/usnistgov/thermo-extrap." @default.
- W4367175065 created "2023-04-28" @default.
- W4367175065 creator A5033695364 @default.
- W4367175065 creator A5042035016 @default.
- W4367175065 creator A5053112437 @default.
- W4367175065 creator A5064743908 @default.
- W4367175065 date "2023-04-27" @default.
- W4367175065 modified "2023-10-14" @default.
- W4367175065 title "Leveraging uncertainty estimates and derivative information in Gaussian process regression for efficient collection and use of molecular simulation data" @default.
- W4367175065 cites W1625910593 @default.
- W4367175065 cites W1971681697 @default.
- W4367175065 cites W1996956347 @default.
- W4367175065 cites W2015794896 @default.
- W4367175065 cites W2019145327 @default.
- W4367175065 cites W2027800668 @default.
- W4367175065 cites W2029782204 @default.
- W4367175065 cites W2031322480 @default.
- W4367175065 cites W2045192558 @default.
- W4367175065 cites W2051477329 @default.
- W4367175065 cites W2052115827 @default.
- W4367175065 cites W2054557275 @default.
- W4367175065 cites W2057526358 @default.
- W4367175065 cites W2067450098 @default.
- W4367175065 cites W2076348924 @default.
- W4367175065 cites W2077958064 @default.
- W4367175065 cites W2163286960 @default.
- W4367175065 cites W2224161083 @default.
- W4367175065 cites W2319259686 @default.
- W4367175065 cites W2320208651 @default.
- W4367175065 cites W2327612755 @default.
- W4367175065 cites W2417863416 @default.
- W4367175065 cites W2507348356 @default.
- W4367175065 cites W2553755808 @default.
- W4367175065 cites W2571886965 @default.
- W4367175065 cites W2587816979 @default.
- W4367175065 cites W2605147767 @default.
- W4367175065 cites W2608747371 @default.
- W4367175065 cites W2739913959 @default.
- W4367175065 cites W2742302942 @default.
- W4367175065 cites W2763324728 @default.
- W4367175065 cites W2779974626 @default.
- W4367175065 cites W2804505001 @default.
- W4367175065 cites W2900977207 @default.
- W4367175065 cites W2952382728 @default.
- W4367175065 cites W2963135308 @default.
- W4367175065 cites W2999516943 @default.
- W4367175065 cites W3004624428 @default.
- W4367175065 cites W3008405239 @default.
- W4367175065 cites W3012035124 @default.
- W4367175065 cites W3047511151 @default.
- W4367175065 cites W3082136378 @default.
- W4367175065 cites W3091911348 @default.
- W4367175065 cites W3101632990 @default.
- W4367175065 cites W3133850887 @default.
- W4367175065 cites W3189164715 @default.
- W4367175065 cites W3192795966 @default.
- W4367175065 cites W3193408754 @default.
- W4367175065 cites W3201212091 @default.
- W4367175065 cites W3204129194 @default.
- W4367175065 cites W3205096071 @default.
- W4367175065 cites W4210859464 @default.
- W4367175065 cites W4244584041 @default.
- W4367175065 cites W4247993004 @default.
- W4367175065 cites W4297263419 @default.
- W4367175065 doi "https://doi.org/10.1063/5.0148488" @default.
- W4367175065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37102450" @default.
- W4367175065 hasPublicationYear "2023" @default.
- W4367175065 type Work @default.
- W4367175065 citedByCount "1" @default.
- W4367175065 crossrefType "journal-article" @default.
- W4367175065 hasAuthorship W4367175065A5033695364 @default.
- W4367175065 hasAuthorship W4367175065A5042035016 @default.
- W4367175065 hasAuthorship W4367175065A5053112437 @default.
- W4367175065 hasAuthorship W4367175065A5064743908 @default.
- W4367175065 hasBestOaLocation W43671750651 @default.
- W4367175065 hasConcept C101104100 @default.
- W4367175065 hasConcept C104114177 @default.
- W4367175065 hasConcept C105795698 @default.
- W4367175065 hasConcept C11413529 @default.
- W4367175065 hasConcept C119857082 @default.
- W4367175065 hasConcept C124101348 @default.
- W4367175065 hasConcept C126255220 @default.
- W4367175065 hasConcept C132459708 @default.
- W4367175065 hasConcept C137800194 @default.
- W4367175065 hasConcept C147597530 @default.
- W4367175065 hasConcept C154945302 @default.
- W4367175065 hasConcept C163716315 @default.
- W4367175065 hasConcept C185592680 @default.
- W4367175065 hasConcept C28826006 @default.
- W4367175065 hasConcept C33923547 @default.
- W4367175065 hasConcept C41008148 @default.
- W4367175065 hasConcept C554190296 @default.
- W4367175065 hasConcept C61326573 @default.
- W4367175065 hasConcept C71813955 @default.
- W4367175065 hasConcept C76155785 @default.
- W4367175065 hasConcept C81692654 @default.
- W4367175065 hasConceptScore W4367175065C101104100 @default.
- W4367175065 hasConceptScore W4367175065C104114177 @default.
- W4367175065 hasConceptScore W4367175065C105795698 @default.
- W4367175065 hasConceptScore W4367175065C11413529 @default.