Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367180836> ?p ?o ?g. }
- W4367180836 abstract "Abstract Here, we propose a strategy for the global optimization of process flowsheets, a fundamental problem in process systems engineering, based on algebraic surrogates that are built from rigorous simulations via Bayesian symbolic regression. The applied method provides a closed‐form expression that can be optimized to global optimality using state‐of‐the‐art solvers, where BARON or ANTIGONE were the solvers of choice. When predicting unseen test data, the algebraic models show a similar accuracy level compared to traditional surrogates based on Gaussian processes. However, they can be more easily optimized to global optimality due to their analytical closed‐form structure, which allows the user to apply well‐established global deterministic solvers. We show the capabilities of our approach in several case studies, ranging from process units to full flowsheets. The performance of our approach is assessed by comparing the CPU time for model building, the prediction accuracy of the identified model, and the CPU time for the subsequent optimization with a proven benchmark." @default.
- W4367180836 created "2023-04-28" @default.
- W4367180836 creator A5035634406 @default.
- W4367180836 creator A5054559442 @default.
- W4367180836 creator A5059336153 @default.
- W4367180836 date "2023-04-27" @default.
- W4367180836 modified "2023-09-27" @default.
- W4367180836 title "Algebraic surrogate‐based process optimization using Bayesian symbolic learning" @default.
- W4367180836 cites W1510052597 @default.
- W4367180836 cites W1538999574 @default.
- W4367180836 cites W1549553002 @default.
- W4367180836 cites W1967989271 @default.
- W4367180836 cites W1973217014 @default.
- W4367180836 cites W1979769287 @default.
- W4367180836 cites W1985597549 @default.
- W4367180836 cites W1994848651 @default.
- W4367180836 cites W2001741445 @default.
- W4367180836 cites W2021674665 @default.
- W4367180836 cites W2040492000 @default.
- W4367180836 cites W2056371558 @default.
- W4367180836 cites W2071334094 @default.
- W4367180836 cites W2146341805 @default.
- W4367180836 cites W2152195021 @default.
- W4367180836 cites W2406650687 @default.
- W4367180836 cites W2478307678 @default.
- W4367180836 cites W2502655619 @default.
- W4367180836 cites W2793335889 @default.
- W4367180836 cites W2794268050 @default.
- W4367180836 cites W2897068263 @default.
- W4367180836 cites W2902151968 @default.
- W4367180836 cites W2906141735 @default.
- W4367180836 cites W3003690504 @default.
- W4367180836 cites W3067511201 @default.
- W4367180836 cites W3087197881 @default.
- W4367180836 cites W3123545922 @default.
- W4367180836 cites W3161792715 @default.
- W4367180836 cites W3173441636 @default.
- W4367180836 cites W3180549112 @default.
- W4367180836 cites W321648571 @default.
- W4367180836 cites W4200480343 @default.
- W4367180836 cites W4246464108 @default.
- W4367180836 cites W4250503569 @default.
- W4367180836 cites W4252291168 @default.
- W4367180836 cites W4307931660 @default.
- W4367180836 doi "https://doi.org/10.1002/aic.18110" @default.
- W4367180836 hasPublicationYear "2023" @default.
- W4367180836 type Work @default.
- W4367180836 citedByCount "0" @default.
- W4367180836 crossrefType "journal-article" @default.
- W4367180836 hasAuthorship W4367180836A5035634406 @default.
- W4367180836 hasAuthorship W4367180836A5054559442 @default.
- W4367180836 hasAuthorship W4367180836A5059336153 @default.
- W4367180836 hasBestOaLocation W43671808361 @default.
- W4367180836 hasConcept C107673813 @default.
- W4367180836 hasConcept C110332635 @default.
- W4367180836 hasConcept C111919701 @default.
- W4367180836 hasConcept C11413529 @default.
- W4367180836 hasConcept C119857082 @default.
- W4367180836 hasConcept C121332964 @default.
- W4367180836 hasConcept C126255220 @default.
- W4367180836 hasConcept C131675550 @default.
- W4367180836 hasConcept C13280743 @default.
- W4367180836 hasConcept C134306372 @default.
- W4367180836 hasConcept C154945302 @default.
- W4367180836 hasConcept C163716315 @default.
- W4367180836 hasConcept C164752517 @default.
- W4367180836 hasConcept C185798385 @default.
- W4367180836 hasConcept C18912844 @default.
- W4367180836 hasConcept C205649164 @default.
- W4367180836 hasConcept C2776400721 @default.
- W4367180836 hasConcept C2778049539 @default.
- W4367180836 hasConcept C33923547 @default.
- W4367180836 hasConcept C41008148 @default.
- W4367180836 hasConcept C61326573 @default.
- W4367180836 hasConcept C62520636 @default.
- W4367180836 hasConcept C81692654 @default.
- W4367180836 hasConcept C9376300 @default.
- W4367180836 hasConcept C98045186 @default.
- W4367180836 hasConceptScore W4367180836C107673813 @default.
- W4367180836 hasConceptScore W4367180836C110332635 @default.
- W4367180836 hasConceptScore W4367180836C111919701 @default.
- W4367180836 hasConceptScore W4367180836C11413529 @default.
- W4367180836 hasConceptScore W4367180836C119857082 @default.
- W4367180836 hasConceptScore W4367180836C121332964 @default.
- W4367180836 hasConceptScore W4367180836C126255220 @default.
- W4367180836 hasConceptScore W4367180836C131675550 @default.
- W4367180836 hasConceptScore W4367180836C13280743 @default.
- W4367180836 hasConceptScore W4367180836C134306372 @default.
- W4367180836 hasConceptScore W4367180836C154945302 @default.
- W4367180836 hasConceptScore W4367180836C163716315 @default.
- W4367180836 hasConceptScore W4367180836C164752517 @default.
- W4367180836 hasConceptScore W4367180836C185798385 @default.
- W4367180836 hasConceptScore W4367180836C18912844 @default.
- W4367180836 hasConceptScore W4367180836C205649164 @default.
- W4367180836 hasConceptScore W4367180836C2776400721 @default.
- W4367180836 hasConceptScore W4367180836C2778049539 @default.
- W4367180836 hasConceptScore W4367180836C33923547 @default.
- W4367180836 hasConceptScore W4367180836C41008148 @default.
- W4367180836 hasConceptScore W4367180836C61326573 @default.
- W4367180836 hasConceptScore W4367180836C62520636 @default.