Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367182014> ?p ?o ?g. }
- W4367182014 endingPage "2296" @default.
- W4367182014 startingPage "2296" @default.
- W4367182014 abstract "Disasters caused by landslides pose a considerable threat to people’s lives and property, resulting in substantial losses each year. Landslide displacement rate prediction (LDRP) provides a useful fundamental tool for mitigating landslide disasters. However, more accurately predicting LDRP remains a challenge in the study of landslides. Lately, ensemble deep learning algorithms have shown promise in delivering a more precise and effective spatial modeling solution. The core aims of this research are to explore and evaluate the prediction capability of three progressive evolutionary deep learning (DL) techniques, i.e., a recurrent neural network (RNN), long short-term memory (LSTM), and a gated recurrent unit (GRU) ensemble AdaBoost algorithm for modeling rainfall-induced and reservoir-induced landslides in the Baihetan reservoir area in China. The outcomes show that the ensemble DL model could predict the Wangjiashan landslide in the Baihetan reservoir area with improved accuracy. The highest accuracy was achieved in the testing set when the window length equaled 30. However, assembling two predictors outperformed the accuracy of assembling three predictors, with the mean absolute error and root mean square error reaching 1.019 and 1.300, respectively. These findings suggest that the combination of strong learners and DL can yield satisfactory prediction results." @default.
- W4367182014 created "2023-04-28" @default.
- W4367182014 creator A5021682973 @default.
- W4367182014 creator A5042141043 @default.
- W4367182014 creator A5046722454 @default.
- W4367182014 creator A5081393671 @default.
- W4367182014 creator A5081665504 @default.
- W4367182014 date "2023-04-27" @default.
- W4367182014 modified "2023-10-18" @default.
- W4367182014 title "Coupling Progressive Deep Learning with the AdaBoost Framework for Landslide Displacement Rate Prediction in the Baihetan Dam Reservoir, China" @default.
- W4367182014 cites W1992124464 @default.
- W4367182014 cites W1999154420 @default.
- W4367182014 cites W2016210396 @default.
- W4367182014 cites W2038000952 @default.
- W4367182014 cites W2042183912 @default.
- W4367182014 cites W2043266225 @default.
- W4367182014 cites W2046361090 @default.
- W4367182014 cites W2056386366 @default.
- W4367182014 cites W2071673097 @default.
- W4367182014 cites W2136848157 @default.
- W4367182014 cites W2321176371 @default.
- W4367182014 cites W2514009036 @default.
- W4367182014 cites W2787962265 @default.
- W4367182014 cites W2910183581 @default.
- W4367182014 cites W2911424673 @default.
- W4367182014 cites W2942054482 @default.
- W4367182014 cites W2954393874 @default.
- W4367182014 cites W2969973001 @default.
- W4367182014 cites W2970420435 @default.
- W4367182014 cites W2981581709 @default.
- W4367182014 cites W2982569617 @default.
- W4367182014 cites W2990353568 @default.
- W4367182014 cites W2997476036 @default.
- W4367182014 cites W3006583570 @default.
- W4367182014 cites W3013874315 @default.
- W4367182014 cites W3032913569 @default.
- W4367182014 cites W3037071415 @default.
- W4367182014 cites W3093358807 @default.
- W4367182014 cites W3130006539 @default.
- W4367182014 cites W3164422209 @default.
- W4367182014 cites W3216938012 @default.
- W4367182014 cites W4210779195 @default.
- W4367182014 cites W4213035291 @default.
- W4367182014 cites W4224225412 @default.
- W4367182014 cites W4226060831 @default.
- W4367182014 cites W4229441267 @default.
- W4367182014 cites W4280519143 @default.
- W4367182014 cites W4281707042 @default.
- W4367182014 cites W4313128715 @default.
- W4367182014 cites W4313427757 @default.
- W4367182014 cites W4317537919 @default.
- W4367182014 doi "https://doi.org/10.3390/rs15092296" @default.
- W4367182014 hasPublicationYear "2023" @default.
- W4367182014 type Work @default.
- W4367182014 citedByCount "1" @default.
- W4367182014 countsByYear W43671820142023 @default.
- W4367182014 crossrefType "journal-article" @default.
- W4367182014 hasAuthorship W4367182014A5021682973 @default.
- W4367182014 hasAuthorship W4367182014A5042141043 @default.
- W4367182014 hasAuthorship W4367182014A5046722454 @default.
- W4367182014 hasAuthorship W4367182014A5081393671 @default.
- W4367182014 hasAuthorship W4367182014A5081665504 @default.
- W4367182014 hasBestOaLocation W43671820141 @default.
- W4367182014 hasConcept C107551265 @default.
- W4367182014 hasConcept C119898033 @default.
- W4367182014 hasConcept C12267149 @default.
- W4367182014 hasConcept C127313418 @default.
- W4367182014 hasConcept C141404830 @default.
- W4367182014 hasConcept C154945302 @default.
- W4367182014 hasConcept C15744967 @default.
- W4367182014 hasConcept C165205528 @default.
- W4367182014 hasConcept C169258074 @default.
- W4367182014 hasConcept C186295008 @default.
- W4367182014 hasConcept C41008148 @default.
- W4367182014 hasConcept C45942800 @default.
- W4367182014 hasConcept C542102704 @default.
- W4367182014 hasConceptScore W4367182014C107551265 @default.
- W4367182014 hasConceptScore W4367182014C119898033 @default.
- W4367182014 hasConceptScore W4367182014C12267149 @default.
- W4367182014 hasConceptScore W4367182014C127313418 @default.
- W4367182014 hasConceptScore W4367182014C141404830 @default.
- W4367182014 hasConceptScore W4367182014C154945302 @default.
- W4367182014 hasConceptScore W4367182014C15744967 @default.
- W4367182014 hasConceptScore W4367182014C165205528 @default.
- W4367182014 hasConceptScore W4367182014C169258074 @default.
- W4367182014 hasConceptScore W4367182014C186295008 @default.
- W4367182014 hasConceptScore W4367182014C41008148 @default.
- W4367182014 hasConceptScore W4367182014C45942800 @default.
- W4367182014 hasConceptScore W4367182014C542102704 @default.
- W4367182014 hasIssue "9" @default.
- W4367182014 hasLocation W43671820141 @default.
- W4367182014 hasOpenAccess W4367182014 @default.
- W4367182014 hasPrimaryLocation W43671820141 @default.
- W4367182014 hasRelatedWork W2600353413 @default.
- W4367182014 hasRelatedWork W2969860943 @default.
- W4367182014 hasRelatedWork W3037312783 @default.
- W4367182014 hasRelatedWork W3159962567 @default.
- W4367182014 hasRelatedWork W3210229324 @default.