Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367182440> ?p ?o ?g. }
- W4367182440 endingPage "1339" @default.
- W4367182440 startingPage "1339" @default.
- W4367182440 abstract "The accurate estimation of reservoir porosity plays a vital role in estimating the amount of hydrocarbon reserves and evaluating the economic potential of a reservoir. It also aids decision making during the exploration and development phases of oil and gas fields. This study evaluates the integration of artificial intelligence techniques, conventional well logs, and core analysis for the accurate prediction of porosity in carbonate reservoirs. In general, carbonate reservoirs are characterized by their complex pore systems, with the wide spatial variation and highly nonlinear nature of their petrophysical properties. Therefore, they require detailed well-log interpretations to accurately estimate their properties, making them good candidates for the application of machine learning techniques. Accordingly, a large database of (2100) well-log records and core-porosity measurements were integrated with four state-of-the-art machine learning techniques (multilayer perceptron artificial neural network, MLP-ANN; Gaussian process regression, GPR; least squares gradient boosting ensemble, LS-Boost; and radial basis function neural network, RBF-NN) for the prediction of reservoir porosity. The well-log data used in this study include sonic acoustic travel time, Gamma-ray, and bulk density log records, which were carefully collected from five wells in a carbonate reservoir. This study revealed that all the artificial intelligence models achieved high accuracy, with R-squared values exceeding 90% during both the training and blind-testing phases. Among the AI models examined, the GPR model outperformed the others in terms of the R-squared values, root-mean-square error (RMSE), and coefficient of variation of the root-mean-square error (CVRMSE). Furthermore, this study introduces an artificially intelligent AI-based correlation for the estimation of reservoir porosity from well-log data; this correlation was developed using an in-house, Fortran-coded MLP-ANN model presented herein. This AI-based correlation gave a promising level of accuracy, with R-squared values of 92% and 90% for the training and blind-testing datasets, respectively. This correlation can serve as an accurate and easy-to-use tool for porosity prediction without any prior experience in utilizing or implementing machine learning models." @default.
- W4367182440 created "2023-04-28" @default.
- W4367182440 creator A5017459748 @default.
- W4367182440 creator A5069331404 @default.
- W4367182440 creator A5078639030 @default.
- W4367182440 creator A5086954120 @default.
- W4367182440 date "2023-04-26" @default.
- W4367182440 modified "2023-09-30" @default.
- W4367182440 title "Integration of Multiple Bayesian Optimized Machine Learning Techniques and Conventional Well Logs for Accurate Prediction of Porosity in Carbonate Reservoirs" @default.
- W4367182440 cites W1678356000 @default.
- W4367182440 cites W1978491722 @default.
- W4367182440 cites W1980046581 @default.
- W4367182440 cites W1981362166 @default.
- W4367182440 cites W1983430068 @default.
- W4367182440 cites W1986517446 @default.
- W4367182440 cites W1988210039 @default.
- W4367182440 cites W1989881476 @default.
- W4367182440 cites W2007864935 @default.
- W4367182440 cites W2034709803 @default.
- W4367182440 cites W2058032984 @default.
- W4367182440 cites W2066841020 @default.
- W4367182440 cites W2067165843 @default.
- W4367182440 cites W2083424082 @default.
- W4367182440 cites W2089275293 @default.
- W4367182440 cites W2093990067 @default.
- W4367182440 cites W2104992059 @default.
- W4367182440 cites W2123772121 @default.
- W4367182440 cites W2126775724 @default.
- W4367182440 cites W2142166388 @default.
- W4367182440 cites W2155399784 @default.
- W4367182440 cites W2247603160 @default.
- W4367182440 cites W2616881109 @default.
- W4367182440 cites W2796603922 @default.
- W4367182440 cites W2896336440 @default.
- W4367182440 cites W2903853321 @default.
- W4367182440 cites W2972094511 @default.
- W4367182440 cites W2979950223 @default.
- W4367182440 cites W2981180140 @default.
- W4367182440 cites W3033770444 @default.
- W4367182440 cites W3091916006 @default.
- W4367182440 cites W3107317270 @default.
- W4367182440 cites W3157185718 @default.
- W4367182440 cites W3157470711 @default.
- W4367182440 cites W3204654155 @default.
- W4367182440 cites W3207625436 @default.
- W4367182440 cites W4211049957 @default.
- W4367182440 cites W4285605714 @default.
- W4367182440 cites W4310682233 @default.
- W4367182440 cites W4320717513 @default.
- W4367182440 doi "https://doi.org/10.3390/pr11051339" @default.
- W4367182440 hasPublicationYear "2023" @default.
- W4367182440 type Work @default.
- W4367182440 citedByCount "1" @default.
- W4367182440 countsByYear W43671824402023 @default.
- W4367182440 crossrefType "journal-article" @default.
- W4367182440 hasAuthorship W4367182440A5017459748 @default.
- W4367182440 hasAuthorship W4367182440A5069331404 @default.
- W4367182440 hasAuthorship W4367182440A5078639030 @default.
- W4367182440 hasAuthorship W4367182440A5086954120 @default.
- W4367182440 hasBestOaLocation W43671824401 @default.
- W4367182440 hasConcept C105795698 @default.
- W4367182440 hasConcept C119857082 @default.
- W4367182440 hasConcept C127313418 @default.
- W4367182440 hasConcept C139945424 @default.
- W4367182440 hasConcept C154945302 @default.
- W4367182440 hasConcept C187320778 @default.
- W4367182440 hasConcept C33923547 @default.
- W4367182440 hasConcept C35817400 @default.
- W4367182440 hasConcept C41008148 @default.
- W4367182440 hasConcept C46293882 @default.
- W4367182440 hasConcept C50644808 @default.
- W4367182440 hasConcept C6648577 @default.
- W4367182440 hasConcept C78762247 @default.
- W4367182440 hasConceptScore W4367182440C105795698 @default.
- W4367182440 hasConceptScore W4367182440C119857082 @default.
- W4367182440 hasConceptScore W4367182440C127313418 @default.
- W4367182440 hasConceptScore W4367182440C139945424 @default.
- W4367182440 hasConceptScore W4367182440C154945302 @default.
- W4367182440 hasConceptScore W4367182440C187320778 @default.
- W4367182440 hasConceptScore W4367182440C33923547 @default.
- W4367182440 hasConceptScore W4367182440C35817400 @default.
- W4367182440 hasConceptScore W4367182440C41008148 @default.
- W4367182440 hasConceptScore W4367182440C46293882 @default.
- W4367182440 hasConceptScore W4367182440C50644808 @default.
- W4367182440 hasConceptScore W4367182440C6648577 @default.
- W4367182440 hasConceptScore W4367182440C78762247 @default.
- W4367182440 hasIssue "5" @default.
- W4367182440 hasLocation W43671824401 @default.
- W4367182440 hasOpenAccess W4367182440 @default.
- W4367182440 hasPrimaryLocation W43671824401 @default.
- W4367182440 hasRelatedWork W2247603160 @default.
- W4367182440 hasRelatedWork W2351050413 @default.
- W4367182440 hasRelatedWork W2385941162 @default.
- W4367182440 hasRelatedWork W2410999582 @default.
- W4367182440 hasRelatedWork W2595101125 @default.
- W4367182440 hasRelatedWork W2768877941 @default.
- W4367182440 hasRelatedWork W2967499481 @default.
- W4367182440 hasRelatedWork W3212966402 @default.