Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367182593> ?p ?o ?g. }
- W4367182593 endingPage "553" @default.
- W4367182593 startingPage "534" @default.
- W4367182593 abstract "Uniform designs seek to distribute design points uniformly in the experimental domain. Some discrepancies have been developed to measure the uniformity by treating all factors equally. It is reasonable when there exists no prior information about the system or when the potential model is completely unclear. However, in the situation of sequential designs, experimental information, such as the importance of each factor, would be obtained from previous stage experiments. With this fact, the weighted L2-discrepancy is more suitable than the original discrepancy for choosing follow-up designs. In this paper, the sequentially weighted uniform design is proposed, which is obtained by minimizing the weighted L2-discrepancy. The weights, indicating the relative importance of each factor, are estimated through a Bayesian hierarchical Gaussian process method based on serial experimental data. Results from several classic computer simulator examples, as well as a real application in circuit design, demonstrate that the performance of our new method surpasses that of its counterparts." @default.
- W4367182593 created "2023-04-28" @default.
- W4367182593 creator A5030893733 @default.
- W4367182593 creator A5042401810 @default.
- W4367182593 creator A5049187598 @default.
- W4367182593 creator A5091408797 @default.
- W4367182593 date "2023-04-27" @default.
- W4367182593 modified "2023-09-27" @default.
- W4367182593 title "Sequentially weighted uniform designs" @default.
- W4367182593 cites W1543280314 @default.
- W4367182593 cites W1968392009 @default.
- W4367182593 cites W1972535210 @default.
- W4367182593 cites W1977715424 @default.
- W4367182593 cites W1981270896 @default.
- W4367182593 cites W1981743146 @default.
- W4367182593 cites W2009986298 @default.
- W4367182593 cites W2018044188 @default.
- W4367182593 cites W2019970588 @default.
- W4367182593 cites W2040396531 @default.
- W4367182593 cites W2045356940 @default.
- W4367182593 cites W2054085683 @default.
- W4367182593 cites W2073194613 @default.
- W4367182593 cites W2073987885 @default.
- W4367182593 cites W2076233842 @default.
- W4367182593 cites W2078724116 @default.
- W4367182593 cites W2079315534 @default.
- W4367182593 cites W2090766112 @default.
- W4367182593 cites W2095582119 @default.
- W4367182593 cites W2150099882 @default.
- W4367182593 cites W2150705946 @default.
- W4367182593 cites W2190316897 @default.
- W4367182593 cites W2195889309 @default.
- W4367182593 cites W2325676865 @default.
- W4367182593 cites W2478899349 @default.
- W4367182593 cites W2508420562 @default.
- W4367182593 cites W2508606933 @default.
- W4367182593 cites W2528410818 @default.
- W4367182593 cites W2553804928 @default.
- W4367182593 cites W2885434394 @default.
- W4367182593 cites W2895503911 @default.
- W4367182593 cites W2947691432 @default.
- W4367182593 cites W2951009676 @default.
- W4367182593 cites W2963658776 @default.
- W4367182593 cites W2976417473 @default.
- W4367182593 cites W2986603759 @default.
- W4367182593 cites W2997760433 @default.
- W4367182593 cites W3013946684 @default.
- W4367182593 cites W3176231033 @default.
- W4367182593 cites W4221087410 @default.
- W4367182593 cites W4237938407 @default.
- W4367182593 doi "https://doi.org/10.1080/02331888.2023.2204438" @default.
- W4367182593 hasPublicationYear "2023" @default.
- W4367182593 type Work @default.
- W4367182593 citedByCount "1" @default.
- W4367182593 countsByYear W43671825932023 @default.
- W4367182593 crossrefType "journal-article" @default.
- W4367182593 hasAuthorship W4367182593A5030893733 @default.
- W4367182593 hasAuthorship W4367182593A5042401810 @default.
- W4367182593 hasAuthorship W4367182593A5049187598 @default.
- W4367182593 hasAuthorship W4367182593A5091408797 @default.
- W4367182593 hasConcept C105795698 @default.
- W4367182593 hasConcept C107673813 @default.
- W4367182593 hasConcept C111919701 @default.
- W4367182593 hasConcept C11413529 @default.
- W4367182593 hasConcept C121332964 @default.
- W4367182593 hasConcept C124101348 @default.
- W4367182593 hasConcept C126255220 @default.
- W4367182593 hasConcept C134306372 @default.
- W4367182593 hasConcept C163716315 @default.
- W4367182593 hasConcept C186394612 @default.
- W4367182593 hasConcept C199360897 @default.
- W4367182593 hasConcept C2780009758 @default.
- W4367182593 hasConcept C2781039887 @default.
- W4367182593 hasConcept C33923547 @default.
- W4367182593 hasConcept C34559072 @default.
- W4367182593 hasConcept C36503486 @default.
- W4367182593 hasConcept C41008148 @default.
- W4367182593 hasConcept C61326573 @default.
- W4367182593 hasConcept C62520636 @default.
- W4367182593 hasConcept C87466663 @default.
- W4367182593 hasConcept C98045186 @default.
- W4367182593 hasConceptScore W4367182593C105795698 @default.
- W4367182593 hasConceptScore W4367182593C107673813 @default.
- W4367182593 hasConceptScore W4367182593C111919701 @default.
- W4367182593 hasConceptScore W4367182593C11413529 @default.
- W4367182593 hasConceptScore W4367182593C121332964 @default.
- W4367182593 hasConceptScore W4367182593C124101348 @default.
- W4367182593 hasConceptScore W4367182593C126255220 @default.
- W4367182593 hasConceptScore W4367182593C134306372 @default.
- W4367182593 hasConceptScore W4367182593C163716315 @default.
- W4367182593 hasConceptScore W4367182593C186394612 @default.
- W4367182593 hasConceptScore W4367182593C199360897 @default.
- W4367182593 hasConceptScore W4367182593C2780009758 @default.
- W4367182593 hasConceptScore W4367182593C2781039887 @default.
- W4367182593 hasConceptScore W4367182593C33923547 @default.
- W4367182593 hasConceptScore W4367182593C34559072 @default.
- W4367182593 hasConceptScore W4367182593C36503486 @default.
- W4367182593 hasConceptScore W4367182593C41008148 @default.