Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367183708> ?p ?o ?g. }
- W4367183708 endingPage "120255" @default.
- W4367183708 startingPage "120255" @default.
- W4367183708 abstract "This paper proposes a new generative model to produce signals of variable lengths. The proposed frequency-learning generative network (FLGN), which is designed and trained based on signal processing knowledge, can generate signals in a desired time range. The frequency information of the training data can be directly learned by the proposed method. A frequency is assumed to be decomposed to include deterministic and stochastic frequency parts. In the proposed approach, the deterministic frequency is learned in the form of a trainable parameter and the stochastic frequency is determined by the output of a frequency extractor. First, a phase extractor outputs a feature that corresponds to the phase of each frequency component. Then, a sine-basis is defined using the phase feature and the final frequency which is the summation of the deterministic and stochastic frequencies. Next, a magnitude extractor produces the magnitude feature from the sine-basis. Finally, the final output becomes the dot product of the sine-basis and the magnitude features. In the work described here, the proposed method is evaluated both quantitatively and qualitatively using three datasets: one simulation dataset and two experimental testbed datasets. The validation results indicate that the generated signal is similar to the true signal, when comparing them in the time-domain and frequency-domain. The results of the quantitative evaluation show that the signal generated by the proposed method has statistical characteristics that are similar to the true signal. Finally, the evaluation shows that the proposed model focuses on the characteristic frequencies while learning the frequency components." @default.
- W4367183708 created "2023-04-28" @default.
- W4367183708 creator A5014349802 @default.
- W4367183708 creator A5040596221 @default.
- W4367183708 creator A5043731787 @default.
- W4367183708 creator A5080219314 @default.
- W4367183708 creator A5084771659 @default.
- W4367183708 date "2023-10-01" @default.
- W4367183708 modified "2023-09-23" @default.
- W4367183708 title "Frequency-learning generative network (FLGN) to generate vibration signals of variable lengths" @default.
- W4367183708 cites W1576278180 @default.
- W4367183708 cites W1677182931 @default.
- W4367183708 cites W1969989373 @default.
- W4367183708 cites W2335783338 @default.
- W4367183708 cites W2566702409 @default.
- W4367183708 cites W2741636173 @default.
- W4367183708 cites W2752782242 @default.
- W4367183708 cites W2902985761 @default.
- W4367183708 cites W2905386532 @default.
- W4367183708 cites W2910881901 @default.
- W4367183708 cites W2912538417 @default.
- W4367183708 cites W2915887917 @default.
- W4367183708 cites W2936503027 @default.
- W4367183708 cites W2940589124 @default.
- W4367183708 cites W2950384630 @default.
- W4367183708 cites W3106586287 @default.
- W4367183708 cites W3112955596 @default.
- W4367183708 cites W3115630438 @default.
- W4367183708 cites W3159388551 @default.
- W4367183708 cites W3195959685 @default.
- W4367183708 cites W3206096081 @default.
- W4367183708 cites W3209210498 @default.
- W4367183708 cites W3213841105 @default.
- W4367183708 cites W3214086990 @default.
- W4367183708 cites W4206146696 @default.
- W4367183708 cites W4212869741 @default.
- W4367183708 cites W4252713891 @default.
- W4367183708 doi "https://doi.org/10.1016/j.eswa.2023.120255" @default.
- W4367183708 hasPublicationYear "2023" @default.
- W4367183708 type Work @default.
- W4367183708 citedByCount "0" @default.
- W4367183708 crossrefType "journal-article" @default.
- W4367183708 hasAuthorship W4367183708A5014349802 @default.
- W4367183708 hasAuthorship W4367183708A5040596221 @default.
- W4367183708 hasAuthorship W4367183708A5043731787 @default.
- W4367183708 hasAuthorship W4367183708A5080219314 @default.
- W4367183708 hasAuthorship W4367183708A5084771659 @default.
- W4367183708 hasConcept C106131492 @default.
- W4367183708 hasConcept C11413529 @default.
- W4367183708 hasConcept C115961682 @default.
- W4367183708 hasConcept C12426560 @default.
- W4367183708 hasConcept C137798554 @default.
- W4367183708 hasConcept C138885662 @default.
- W4367183708 hasConcept C153180895 @default.
- W4367183708 hasConcept C154945302 @default.
- W4367183708 hasConcept C167966045 @default.
- W4367183708 hasConcept C186661526 @default.
- W4367183708 hasConcept C19118579 @default.
- W4367183708 hasConcept C199360897 @default.
- W4367183708 hasConcept C2524010 @default.
- W4367183708 hasConcept C2776401178 @default.
- W4367183708 hasConcept C2779843651 @default.
- W4367183708 hasConcept C31972630 @default.
- W4367183708 hasConcept C33923547 @default.
- W4367183708 hasConcept C39890363 @default.
- W4367183708 hasConcept C41008148 @default.
- W4367183708 hasConcept C41895202 @default.
- W4367183708 hasConcept C99498987 @default.
- W4367183708 hasConceptScore W4367183708C106131492 @default.
- W4367183708 hasConceptScore W4367183708C11413529 @default.
- W4367183708 hasConceptScore W4367183708C115961682 @default.
- W4367183708 hasConceptScore W4367183708C12426560 @default.
- W4367183708 hasConceptScore W4367183708C137798554 @default.
- W4367183708 hasConceptScore W4367183708C138885662 @default.
- W4367183708 hasConceptScore W4367183708C153180895 @default.
- W4367183708 hasConceptScore W4367183708C154945302 @default.
- W4367183708 hasConceptScore W4367183708C167966045 @default.
- W4367183708 hasConceptScore W4367183708C186661526 @default.
- W4367183708 hasConceptScore W4367183708C19118579 @default.
- W4367183708 hasConceptScore W4367183708C199360897 @default.
- W4367183708 hasConceptScore W4367183708C2524010 @default.
- W4367183708 hasConceptScore W4367183708C2776401178 @default.
- W4367183708 hasConceptScore W4367183708C2779843651 @default.
- W4367183708 hasConceptScore W4367183708C31972630 @default.
- W4367183708 hasConceptScore W4367183708C33923547 @default.
- W4367183708 hasConceptScore W4367183708C39890363 @default.
- W4367183708 hasConceptScore W4367183708C41008148 @default.
- W4367183708 hasConceptScore W4367183708C41895202 @default.
- W4367183708 hasConceptScore W4367183708C99498987 @default.
- W4367183708 hasFunder F4320322030 @default.
- W4367183708 hasFunder F4320322120 @default.
- W4367183708 hasLocation W43671837081 @default.
- W4367183708 hasOpenAccess W4367183708 @default.
- W4367183708 hasPrimaryLocation W43671837081 @default.
- W4367183708 hasRelatedWork W2016461833 @default.
- W4367183708 hasRelatedWork W2052253960 @default.
- W4367183708 hasRelatedWork W2147802381 @default.
- W4367183708 hasRelatedWork W2382607599 @default.