Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367183710> ?p ?o ?g. }
- W4367183710 endingPage "2289" @default.
- W4367183710 startingPage "2289" @default.
- W4367183710 abstract "The widely spread alpine grassland ecosystem in the Three River Headwaters Region (TRHR) plays an essential ecological role in carbon sequestration and soil and water conservation. In this study, we test the latest high spatial resolution hyperspectral (Zhuhai-1 OHS) remote sensing imagery to examine different alpine grassland coverage levels using Multiple Endmember Spectral Mixture Analysis (MESMA). Our results suggest that the 3-endmember (3-EM) MESMA model can provide the highest image pixel unmixing percentage, with a percentage exceeding 97% and 96% for pixel scale and landscape scale, respectively. The overall accuracy shows that Zhuhai-1 OHS imagery obtained the highest overall accuracy (83.7%, k = 0.77) in the landscape scale, but in the pixel scale, it is not as good as Landsat 8 OLI imagery. Overall, we can conclude that the hyperspectral imagery combined 3-EM MESMA model performs better in both pixel scale and landscape scale alpine grassland coverage mapping, while the multispectral imagery with the 3-EM MESMA model can satisfy requirements of alpine grassland coverage mapping at the pixel scale. The approaches and workflow to mapping alpine grassland in this study can help monitor alpine grassland degradation; not only in the Qinghai–Tibetan Plateau (QTP), but also in other grassland ecosystems." @default.
- W4367183710 created "2023-04-28" @default.
- W4367183710 creator A5000712993 @default.
- W4367183710 creator A5006407582 @default.
- W4367183710 creator A5006501721 @default.
- W4367183710 creator A5020253564 @default.
- W4367183710 creator A5027232900 @default.
- W4367183710 creator A5037092806 @default.
- W4367183710 creator A5046500411 @default.
- W4367183710 creator A5090429120 @default.
- W4367183710 date "2023-04-26" @default.
- W4367183710 modified "2023-10-15" @default.
- W4367183710 title "Mapping Alpine Grassland Fraction Coverage Using Zhuhai-1 OHS Imagery in the Three River Headwaters Region, China" @default.
- W4367183710 cites W1503228824 @default.
- W4367183710 cites W1979839678 @default.
- W4367183710 cites W1988998717 @default.
- W4367183710 cites W1994193345 @default.
- W4367183710 cites W2007342648 @default.
- W4367183710 cites W2012831013 @default.
- W4367183710 cites W2015502627 @default.
- W4367183710 cites W2017430034 @default.
- W4367183710 cites W2020815961 @default.
- W4367183710 cites W2024988889 @default.
- W4367183710 cites W2025389829 @default.
- W4367183710 cites W2031715335 @default.
- W4367183710 cites W2033430899 @default.
- W4367183710 cites W2046339565 @default.
- W4367183710 cites W2051267215 @default.
- W4367183710 cites W2058891717 @default.
- W4367183710 cites W2080341437 @default.
- W4367183710 cites W2083848515 @default.
- W4367183710 cites W2084744129 @default.
- W4367183710 cites W2085918337 @default.
- W4367183710 cites W2109035964 @default.
- W4367183710 cites W2117538090 @default.
- W4367183710 cites W2123907688 @default.
- W4367183710 cites W2138973222 @default.
- W4367183710 cites W2144881411 @default.
- W4367183710 cites W2158535548 @default.
- W4367183710 cites W2161786950 @default.
- W4367183710 cites W2162421262 @default.
- W4367183710 cites W2163689283 @default.
- W4367183710 cites W2171808568 @default.
- W4367183710 cites W2172063876 @default.
- W4367183710 cites W2461587268 @default.
- W4367183710 cites W2470203776 @default.
- W4367183710 cites W2563705800 @default.
- W4367183710 cites W2750780584 @default.
- W4367183710 cites W2751042086 @default.
- W4367183710 cites W2793704983 @default.
- W4367183710 cites W2884158490 @default.
- W4367183710 cites W2894353586 @default.
- W4367183710 cites W2894712623 @default.
- W4367183710 cites W2909804670 @default.
- W4367183710 cites W2919327039 @default.
- W4367183710 cites W2961163108 @default.
- W4367183710 cites W2965094494 @default.
- W4367183710 cites W2972225768 @default.
- W4367183710 cites W2978685663 @default.
- W4367183710 cites W3022928752 @default.
- W4367183710 cites W3077843495 @default.
- W4367183710 cites W3109500193 @default.
- W4367183710 cites W3135982901 @default.
- W4367183710 cites W3194816916 @default.
- W4367183710 cites W3198537305 @default.
- W4367183710 cites W3199107112 @default.
- W4367183710 cites W3206230803 @default.
- W4367183710 cites W339441670 @default.
- W4367183710 cites W420801635 @default.
- W4367183710 cites W4210699701 @default.
- W4367183710 cites W4221053777 @default.
- W4367183710 cites W4224223423 @default.
- W4367183710 cites W4225682681 @default.
- W4367183710 cites W4226321393 @default.
- W4367183710 doi "https://doi.org/10.3390/rs15092289" @default.
- W4367183710 hasPublicationYear "2023" @default.
- W4367183710 type Work @default.
- W4367183710 citedByCount "0" @default.
- W4367183710 crossrefType "journal-article" @default.
- W4367183710 hasAuthorship W4367183710A5000712993 @default.
- W4367183710 hasAuthorship W4367183710A5006407582 @default.
- W4367183710 hasAuthorship W4367183710A5006501721 @default.
- W4367183710 hasAuthorship W4367183710A5020253564 @default.
- W4367183710 hasAuthorship W4367183710A5027232900 @default.
- W4367183710 hasAuthorship W4367183710A5037092806 @default.
- W4367183710 hasAuthorship W4367183710A5046500411 @default.
- W4367183710 hasAuthorship W4367183710A5090429120 @default.
- W4367183710 hasBestOaLocation W43671837101 @default.
- W4367183710 hasConcept C100970517 @default.
- W4367183710 hasConcept C159078339 @default.
- W4367183710 hasConcept C159390177 @default.
- W4367183710 hasConcept C173163844 @default.
- W4367183710 hasConcept C18903297 @default.
- W4367183710 hasConcept C205649164 @default.
- W4367183710 hasConcept C2775835988 @default.
- W4367183710 hasConcept C2778102629 @default.
- W4367183710 hasConcept C2778755073 @default.
- W4367183710 hasConcept C39432304 @default.