Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367183786> ?p ?o ?g. }
- W4367183786 abstract "Objective High-risk prostate cancer (PCa) is often treated by prostate-only radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease progression following PORT. Conventional clinical factors may be unable to identify at-risk subgroups in the era of precision medicine. In this study, we aimed to investigate the prognostic value of pre-treatment planning computed tomography (pCT)-based radiomic features and clinical attributes to predict 5-year progression-free survival (PFS) in high-risk PCa patients following PORT. Materials and methods A total of 176 biopsy-confirmed PCa patients who were treated at the Hong Kong Princess Margaret Hospital were retrospectively screened for eligibility. Clinical data and pCT of one hundred eligible high-risk PCa patients were analysed. Radiomic features were extracted from the gross-tumour-volume (GTV) with and without applying Laplacian-of-Gaussian (LoG) filter. The entire patient cohort was temporally stratified into a training and an independent validation cohort in a ratio of 3:1. Radiomics (R), clinical (C) and radiomic-clinical (RC) combined models were developed by Ridge regression through 5-fold cross-validation with 100 iterations on the training cohort. A model score was calculated for each model based on the included features. Model classification performance on 5-year PFS was evaluated in the independent validation cohort by average area-under-curve (AUC) of receiver-operating-characteristics (ROC) curve and precision-recall curve (PRC). Delong’s test was used for model comparison. Results The RC combined model which contains 6 predictive features (tumour flatness, root-mean-square on fine LoG-filtered image, prostate-specific antigen serum concentration, Gleason score, Roach score and GTV volume) was the best-performing model (AUC = 0.797, 95%CI = 0.768-0.826), which significantly outperformed the R-model (AUC = 0.795, 95%CI = 0.774-0.816) and C-model (AUC = 0.625, 95%CI = 0.585-0.665) in the independent validation cohort. Besides, only the RC model score significantly classified patients in both cohorts into progression and progression-free groups regarding their 5-year PFS (p< 0.05). Conclusion Combining pCT-based radiomic and clinical attributes provided superior prognostication value regarding 5-year PFS in high-risk PCa patients following PORT. A large multi-centre study will potentially aid clinicians in implementing personalised treatment for this vulnerable subgroup in the future." @default.
- W4367183786 created "2023-04-28" @default.
- W4367183786 creator A5006255012 @default.
- W4367183786 creator A5008615901 @default.
- W4367183786 creator A5014512808 @default.
- W4367183786 creator A5027000507 @default.
- W4367183786 creator A5038629954 @default.
- W4367183786 creator A5045286958 @default.
- W4367183786 creator A5046285012 @default.
- W4367183786 creator A5047167581 @default.
- W4367183786 creator A5052884545 @default.
- W4367183786 creator A5075977811 @default.
- W4367183786 date "2023-04-27" @default.
- W4367183786 modified "2023-09-30" @default.
- W4367183786 title "Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer" @default.
- W4367183786 cites W1973908703 @default.
- W4367183786 cites W2004601306 @default.
- W4367183786 cites W2011197894 @default.
- W4367183786 cites W2014420251 @default.
- W4367183786 cites W2027576789 @default.
- W4367183786 cites W2034006331 @default.
- W4367183786 cites W2066300395 @default.
- W4367183786 cites W2073607259 @default.
- W4367183786 cites W2089312793 @default.
- W4367183786 cites W2093867637 @default.
- W4367183786 cites W2095740768 @default.
- W4367183786 cites W2120831575 @default.
- W4367183786 cites W2134548622 @default.
- W4367183786 cites W2152575748 @default.
- W4367183786 cites W2158275940 @default.
- W4367183786 cites W2171230974 @default.
- W4367183786 cites W2172029087 @default.
- W4367183786 cites W2417740940 @default.
- W4367183786 cites W2506062488 @default.
- W4367183786 cites W2536173378 @default.
- W4367183786 cites W2734564664 @default.
- W4367183786 cites W2736411575 @default.
- W4367183786 cites W2739990198 @default.
- W4367183786 cites W2763355946 @default.
- W4367183786 cites W2767128594 @default.
- W4367183786 cites W2786389604 @default.
- W4367183786 cites W2801634535 @default.
- W4367183786 cites W2886541417 @default.
- W4367183786 cites W2896978422 @default.
- W4367183786 cites W2901194350 @default.
- W4367183786 cites W2945416374 @default.
- W4367183786 cites W2955781876 @default.
- W4367183786 cites W2959970591 @default.
- W4367183786 cites W2972216523 @default.
- W4367183786 cites W3012998323 @default.
- W4367183786 cites W3021441388 @default.
- W4367183786 cites W3022063449 @default.
- W4367183786 cites W3038121899 @default.
- W4367183786 cites W3080506495 @default.
- W4367183786 cites W3082797904 @default.
- W4367183786 cites W3092055257 @default.
- W4367183786 cites W3109609494 @default.
- W4367183786 cites W3125743225 @default.
- W4367183786 cites W3128646645 @default.
- W4367183786 cites W3138095226 @default.
- W4367183786 cites W3160069196 @default.
- W4367183786 cites W3192156946 @default.
- W4367183786 cites W3216167298 @default.
- W4367183786 cites W4200415931 @default.
- W4367183786 cites W4206928819 @default.
- W4367183786 cites W4210285965 @default.
- W4367183786 cites W4210436607 @default.
- W4367183786 cites W4210474723 @default.
- W4367183786 cites W4210825851 @default.
- W4367183786 cites W4214696573 @default.
- W4367183786 cites W4221070344 @default.
- W4367183786 cites W4221131374 @default.
- W4367183786 cites W4379160934 @default.
- W4367183786 doi "https://doi.org/10.3389/fonc.2023.1060687" @default.
- W4367183786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37205204" @default.
- W4367183786 hasPublicationYear "2023" @default.
- W4367183786 type Work @default.
- W4367183786 citedByCount "1" @default.
- W4367183786 countsByYear W43671837862023 @default.
- W4367183786 crossrefType "journal-article" @default.
- W4367183786 hasAuthorship W4367183786A5006255012 @default.
- W4367183786 hasAuthorship W4367183786A5008615901 @default.
- W4367183786 hasAuthorship W4367183786A5014512808 @default.
- W4367183786 hasAuthorship W4367183786A5027000507 @default.
- W4367183786 hasAuthorship W4367183786A5038629954 @default.
- W4367183786 hasAuthorship W4367183786A5045286958 @default.
- W4367183786 hasAuthorship W4367183786A5046285012 @default.
- W4367183786 hasAuthorship W4367183786A5047167581 @default.
- W4367183786 hasAuthorship W4367183786A5052884545 @default.
- W4367183786 hasAuthorship W4367183786A5075977811 @default.
- W4367183786 hasBestOaLocation W43671837861 @default.
- W4367183786 hasConcept C121608353 @default.
- W4367183786 hasConcept C126322002 @default.
- W4367183786 hasConcept C126838900 @default.
- W4367183786 hasConcept C143998085 @default.
- W4367183786 hasConcept C2780192828 @default.
- W4367183786 hasConcept C509974204 @default.
- W4367183786 hasConcept C58471807 @default.
- W4367183786 hasConcept C71924100 @default.
- W4367183786 hasConcept C72563966 @default.